Butler Emily L, Laber Eric B, Davis Sonia M, Kosorok Michael R
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.
Department of Statistics, North Carolina State University, Raleigh, North Carolina, U.S.A.
Biometrics. 2018 Mar;74(1):18-26. doi: 10.1111/biom.12743. Epub 2017 Jul 25.
Precision medicine seeks to provide treatment only if, when, to whom, and at the dose it is needed. Thus, precision medicine is a vehicle by which healthcare can be made both more effective and efficient. Individualized treatment rules operationalize precision medicine as a map from current patient information to a recommended treatment. An optimal individualized treatment rule is defined as maximizing the mean of a pre-specified scalar outcome. However, in settings with multiple outcomes, choosing a scalar composite outcome by which to define optimality is difficult. Furthermore, when there is heterogeneity across patient preferences for these outcomes, it may not be possible to construct a single composite outcome that leads to high-quality treatment recommendations for all patients. We simultaneously estimate the optimal individualized treatment rule for all composite outcomes representable as a convex combination of the (suitably transformed) outcomes. For each patient, we use a preference elicitation questionnaire and item response theory to derive the posterior distribution over preferences for these composite outcomes and subsequently derive an estimator of an optimal individualized treatment rule tailored to patient preferences. We prove that as the number of subjects and items on the questionnaire diverge, our estimator is consistent for an oracle optimal individualized treatment rule wherein each patient's preference is known a priori. We illustrate the proposed method using data from a clinical trial on antipsychotic medications for schizophrenia.
精准医学旨在仅在需要的时候、针对需要的人、以需要的剂量提供治疗。因此,精准医学是一种能使医疗保健更有效且高效的手段。个体化治疗规则将精准医学转化为一张从当前患者信息到推荐治疗方案的地图。最优个体化治疗规则被定义为使预先指定的标量结果的均值最大化。然而,在存在多个结果的情况下,选择一个用于定义最优性的标量综合结果是困难的。此外,当患者对这些结果的偏好存在异质性时,可能无法构建一个能为所有患者带来高质量治疗建议的单一综合结果。我们同时估计所有可表示为(适当变换后的)结果的凸组合的综合结果的最优个体化治疗规则。对于每个患者,我们使用偏好诱导问卷和项目反应理论来推导这些综合结果的偏好后验分布,随后推导出一个根据患者偏好量身定制的最优个体化治疗规则估计量。我们证明,随着问卷上的受试者数量和项目数量趋于无穷,我们的估计量对于一个神谕最优个体化治疗规则是一致的,在该规则中每个患者的偏好是先验已知的。我们使用一项关于精神分裂症抗精神病药物的临床试验数据来说明所提出的方法。