Suppr超能文献

将患者偏好纳入最佳个体化治疗规则的估计中。

Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules.

作者信息

Butler Emily L, Laber Eric B, Davis Sonia M, Kosorok Michael R

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.

Department of Statistics, North Carolina State University, Raleigh, North Carolina, U.S.A.

出版信息

Biometrics. 2018 Mar;74(1):18-26. doi: 10.1111/biom.12743. Epub 2017 Jul 25.

Abstract

Precision medicine seeks to provide treatment only if, when, to whom, and at the dose it is needed. Thus, precision medicine is a vehicle by which healthcare can be made both more effective and efficient. Individualized treatment rules operationalize precision medicine as a map from current patient information to a recommended treatment. An optimal individualized treatment rule is defined as maximizing the mean of a pre-specified scalar outcome. However, in settings with multiple outcomes, choosing a scalar composite outcome by which to define optimality is difficult. Furthermore, when there is heterogeneity across patient preferences for these outcomes, it may not be possible to construct a single composite outcome that leads to high-quality treatment recommendations for all patients. We simultaneously estimate the optimal individualized treatment rule for all composite outcomes representable as a convex combination of the (suitably transformed) outcomes. For each patient, we use a preference elicitation questionnaire and item response theory to derive the posterior distribution over preferences for these composite outcomes and subsequently derive an estimator of an optimal individualized treatment rule tailored to patient preferences. We prove that as the number of subjects and items on the questionnaire diverge, our estimator is consistent for an oracle optimal individualized treatment rule wherein each patient's preference is known a priori. We illustrate the proposed method using data from a clinical trial on antipsychotic medications for schizophrenia.

摘要

精准医学旨在仅在需要的时候、针对需要的人、以需要的剂量提供治疗。因此,精准医学是一种能使医疗保健更有效且高效的手段。个体化治疗规则将精准医学转化为一张从当前患者信息到推荐治疗方案的地图。最优个体化治疗规则被定义为使预先指定的标量结果的均值最大化。然而,在存在多个结果的情况下,选择一个用于定义最优性的标量综合结果是困难的。此外,当患者对这些结果的偏好存在异质性时,可能无法构建一个能为所有患者带来高质量治疗建议的单一综合结果。我们同时估计所有可表示为(适当变换后的)结果的凸组合的综合结果的最优个体化治疗规则。对于每个患者,我们使用偏好诱导问卷和项目反应理论来推导这些综合结果的偏好后验分布,随后推导出一个根据患者偏好量身定制的最优个体化治疗规则估计量。我们证明,随着问卷上的受试者数量和项目数量趋于无穷,我们的估计量对于一个神谕最优个体化治疗规则是一致的,在该规则中每个患者的偏好是先验已知的。我们使用一项关于精神分裂症抗精神病药物的临床试验数据来说明所提出的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a3/5785589/62568975bea4/nihms886501f1.jpg

相似文献

6
Estimating individualized treatment rules for ordinal treatments.估计有序治疗的个体化治疗规则。
Biometrics. 2018 Sep;74(3):924-933. doi: 10.1111/biom.12865. Epub 2018 Mar 13.
10
Set-valued dynamic treatment regimes for competing outcomes.用于竞争结局的集值动态治疗方案。
Biometrics. 2014 Mar;70(1):53-61. doi: 10.1111/biom.12132. Epub 2014 Jan 8.

引用本文的文献

2
5
Individualized treatment rules under stochastic treatment cost constraints.随机治疗成本约束下的个体化治疗规则
J Causal Inference. 2022 Jan;10(1):480-493. doi: 10.1515/jci-2022-0005. Epub 2022 Dec 31.

本文引用的文献

3
Tree-based methods for individualized treatment regimes.用于个性化治疗方案的基于树的方法。
Biometrika. 2015;102(3):501-514. doi: 10.1093/biomet/asv028. Epub 2015 Jul 15.
8
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
10
Interactive model building for -learning.用于学习的交互式模型构建。
Biometrika. 2014 Oct 20;101(4):831-847. doi: 10.1093/biomet/asu043.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验