Davoudi Neda, Estrada Hector, Özbek Ali, Shoham Shy, Razansky Daniel
University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland.
ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland.
Neurophotonics. 2024 Jan;11(1):014413. doi: 10.1117/1.NPh.11.1.014413. Epub 2024 Feb 16.
An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses.
Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses.
We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile.
The focused -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound.
The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
一系列用于靶向神经调节的技术正在兴起,在脑研究和治疗方面具有很高的潜力。钙成像或其他形式的功能荧光成像,是监测皮层对靶向神经调节的神经反应的核心解决方案,但常常与神经反应混在一起的热效应所混淆。
在此,我们开发并演示一种有效抑制钙反应中荧光热瞬变的方法。
我们使用高精度相控阵3兆赫聚焦超声传输,并结合基于纤维镜的宽视野荧光技术,来监测全皮层的钙变化。我们检测神经激活的方法,首先利用静息态动力学的高半球间相关性,然后通过从处理后的轮廓中减去其模拟的时空特征,来消除超声诱导的热效应。
聚焦超声刺激引发了快速的局部激活事件,这些事件主要由超声产生的瞬态热反应主导。通过使用生物热方程对超声热沉积进行建模,我们能够恢复对超声的假定神经反应。
所开发的用于消除瞬态热荧光猝灭的方法,也可应用于光学刺激技术,以监测热效应并将其与神经反应区分开来。这种方法可能有助于加深我们对超声神经调节机制和宏观效应的理解,进一步为针对特定应用定制刺激方案铺平道路。