Marten Ruby, Xiao Mao, Wang Mingyi, Kong Weimeng, He Xu-Cheng, Stolzenburg Dominik, Pfeifer Joschka, Marie Guillaume, Wang Dongyu S, Elser Miriam, Baccarini Andrea, Lee Chuan Ping, Amorim Antonio, Baalbaki Rima, Bell David M, Bertozzi Barbara, Caudillo Lucía, Dada Lubna, Duplissy Jonathan, Finkenzeller Henning, Heinritzi Martin, Lampimäki Markus, Lehtipalo Katrianne, Manninen Hanna E, Mentler Bernhard, Onnela Antti, Petäjä Tuukka, Philippov Maxim, Rörup Birte, Scholz Wiebke, Shen Jiali, Tham Yee Jun, Tomé António, Wagner Andrea C, Weber Stefan K, Zauner-Wieczorek Marcel, Curtius Joachim, Kulmala Markku, Volkamer Rainer, Worsnop Douglas R, Dommen Josef, Flagan Richard C, Kirkby Jasper, McPherson Donahue Neil, Lamkaddam Houssni, Baltensperger Urs, El Haddad Imad
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute 5232 Villigen Switzerland
California Institute of Technology, Division of Chemistry and Chemical Engineering 210-41 Pasadena CA 91125 USA.
Environ Sci Atmos. 2024 Jan 25;4(2):265-274. doi: 10.1039/d3ea00001j. eCollection 2024 Feb 15.
Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles.
通过气体到颗粒过程形成和增长的气溶胶是特大城市雾霾的主要成因,尽管存在增长速率和损失速率之间的竞争。硝酸铵形成带来的快速增长速率有可能在典型的城市污染条件下维持颗粒数量。这个过程需要气相氨和硝酸相对于硝酸铵饱和比的过饱和状态。城市环境是不均匀的。在对流层中,垂直混合很快,气溶胶可能会经历快速变化的温度。在靠近污染源的区域,气相浓度也可能高度可变。在这项工作中,我们展示了在欧洲核子研究中心的CLOUD室中于-10°C和5°C下进行成核实验的结果。我们使用动力学模型验证了在具有温度和浓度不均匀性的城市条件下过饱和状态可能持续的时间,以及它可能对颗粒尺寸分布产生的影响。我们表明,需要1°C/分钟的快速且强烈的温度变化才能通过硝酸铵形成导致纳米颗粒的快速增长。此外,城市中氨的不均匀排放也可能导致颗粒的快速增长。
Environ Sci Atmos. 2024-1-25
Environ Sci Atmos. 2022-4-8
J Air Waste Manag Assoc. 2022-9
J Air Waste Manag Assoc. 2015-3
NPJ Clim Atmos Sci. 2024
Sci Total Environ. 2019-9-1
Proc Natl Acad Sci U S A. 2021-8-31
ACS EST Air. 2025-7-16
Environ Sci Technol. 2024-6-18
Environ Sci Atmos. 2022-4-8
Environ Sci Technol. 2019-8-26
Proc Natl Acad Sci U S A. 2018-8-28
Sci Total Environ. 2016-11-4
Science. 2016-10-27