Suppr超能文献

固态发酵中脂肪酶与生物表面活性剂的联产

Co-production of lipases and biosurfactants by in solid-state fermentation.

作者信息

Kreling Naiara Elisa, Fagundes Victória Dutra, Simon Viviane, Colla Luciane Maria

机构信息

Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil.

出版信息

3 Biotech. 2024 Mar;14(3):78. doi: 10.1007/s13205-023-03910-7. Epub 2024 Feb 15.

Abstract

UNLABELLED

The production of biosurfactants and lipases through solid-state fermentation (SSF) processes remains relatively unexplored, especially in bacterial applications. The use of solid matrices, eliminating the need for precipitation and recovery processes, holds significant potential for facilitating bioremediation. This study aimed to simultaneously produce biocompounds via SSF using and employ the fermented substrate for remediating soil contaminated with 20% biodiesel. Initial efforts focused on determining optimal conditions for concurrent lipase and biosurfactant production during an 8-day fermentation period. The selected conditions, including a substrate mix of wheat bran and corn cob (80/20), 75% moisture, 1% glycerol inducer, 2% nitrogen, and 1% sugarcane molasses, resulted in a 24.61% reduction in surface tension and lipase activity of 3.54 ± 1.20 U. Subsequently, a 90-day bioremediation of clayey soil contaminated with biodiesel showcased notable biodegradation, reaching 72.08 ± 0.36% within the initial 60 days. The incorporation of biocompounds, biostimulation, and bioaugmentation (Test E2) contributed to this efficacy. The use of the fermented substrate as a biostimulant and bioaugmentation agent facilitated in situ biocompound production in the soil, leading to a 23.97% reduction in surface tension and lipase production of 1.52 ± 0.19 U.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-023-03910-7.

摘要

未标记

通过固态发酵(SSF)过程生产生物表面活性剂和脂肪酶的研究相对较少,特别是在细菌应用方面。使用固体基质,无需沉淀和回收过程,在促进生物修复方面具有巨大潜力。本研究旨在通过使用SSF同时生产生物化合物,并将发酵后的底物用于修复被20%生物柴油污染的土壤。最初的努力集中在确定8天发酵期内同时生产脂肪酶和生物表面活性剂的最佳条件。选定的条件包括麦麸和玉米芯的底物混合物(80/20)、75%的湿度、1%的甘油诱导剂、2%的氮和1%的甘蔗 molasses,导致表面张力降低24.61%,脂肪酶活性为3.54±1.20 U。随后,对被生物柴油污染的粘性土壤进行了90天的生物修复,显示出显著的生物降解,在最初的60天内达到72.08±0.36%。生物化合物的掺入、生物刺激和生物强化(测试E2)促成了这种效果。使用发酵后的底物作为生物刺激剂和生物强化剂促进了土壤中生物化合物的原位生产,导致表面张力降低23.97%,脂肪酶产量为1.52±0.19 U。

补充信息

在线版本包含可在10.1007/s13205-023-03910-7获取的补充材料。

相似文献

1
Co-production of lipases and biosurfactants by in solid-state fermentation.
3 Biotech. 2024 Mar;14(3):78. doi: 10.1007/s13205-023-03910-7. Epub 2024 Feb 15.
2
Improving the Bioremediation and in situ Production of Biocompounds of a Biodiesel-Contaminated Soil.
Environ Manage. 2021 Aug;68(2):210-225. doi: 10.1007/s00267-021-01486-7. Epub 2021 Jun 2.
3
Bacterial biosurfactant increases ex situ biodiesel bioremediation in clayey soil.
Biodegradation. 2021 Aug;32(4):389-401. doi: 10.1007/s10532-021-09944-z. Epub 2021 Apr 17.
4
Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil.
Ecotoxicol Environ Saf. 2020 Sep 15;201:110798. doi: 10.1016/j.ecoenv.2020.110798. Epub 2020 Jun 8.
6
Production of a biosurfactant from Bacillus methylotrophicus UCP1616 for use in the bioremediation of oil-contaminated environments.
Ecotoxicology. 2018 Dec;27(10):1310-1322. doi: 10.1007/s10646-018-1982-9. Epub 2018 Nov 3.
7
Microbial biosurfactants: a review of recent environmental applications.
Bioengineered. 2022 May;13(5):12365-12391. doi: 10.1080/21655979.2022.2074621.
10
Utilization of agroindustrial residues for lipase production by solid-state fermentation.
Braz J Microbiol. 2008 Oct;39(4):676-81. doi: 10.1590/S1517-838220080004000015. Epub 2008 Dec 1.

本文引用的文献

1
Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs).
Environ Pollut. 2022 Aug 1;306:119384. doi: 10.1016/j.envpol.2022.119384. Epub 2022 Apr 30.
2
Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants.
Environ Pollut. 2021 Nov 15;289:117956. doi: 10.1016/j.envpol.2021.117956. Epub 2021 Aug 14.
3
Bacterial biosurfactant increases ex situ biodiesel bioremediation in clayey soil.
Biodegradation. 2021 Aug;32(4):389-401. doi: 10.1007/s10532-021-09944-z. Epub 2021 Apr 17.
4
Effects of homemade biosurfactant from Bacillus methylotrophicus on bioremediation efficiency of a clay soil contaminated with diesel oil.
Ecotoxicol Environ Saf. 2020 Sep 15;201:110798. doi: 10.1016/j.ecoenv.2020.110798. Epub 2020 Jun 8.
5
Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils.
J Environ Manage. 2019 Jul 1;241:156-166. doi: 10.1016/j.jenvman.2019.04.019. Epub 2019 Apr 15.
6
Environmental impacts of food waste in Europe.
Waste Manag. 2018 Jul;77:98-113. doi: 10.1016/j.wasman.2018.04.038. Epub 2018 May 12.
7
Going Green and Cold: Biosurfactants from Low-Temperature Environments to Biotechnology Applications.
Trends Biotechnol. 2018 Mar;36(3):277-289. doi: 10.1016/j.tibtech.2017.10.016. Epub 2018 Feb 7.
9
Solid state fermentation (SSF): diversity of applications to valorize waste and biomass.
3 Biotech. 2017 May;7(1):44. doi: 10.1007/s13205-017-0692-y. Epub 2017 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验