Fang Wensheng, Lu Ruihu, Li Fu-Min, He Chaohui, Wu Dan, Yue Kaihang, Mao Yu, Guo Wei, You Bo, Song Fei, Yao Tao, Wang Ziyun, Xia Bao Yu
School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China.
School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand.
Angew Chem Int Ed Engl. 2024 Apr 15;63(16):e202319936. doi: 10.1002/anie.202319936. Epub 2024 Mar 11.
Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO into ethylene (CH), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CORR) catalysts but also advances CO electrolysis technologies for industrial application.
揭示动态重构过程并定制先进的铜(Cu)催化剂对于促进CO转化为乙烯(CH)、为碳中和铺平道路以及促进可再生能源存储具有至关重要的意义。在本研究中,我们首先采用密度泛函理论(DFT)和分子动力学(MD)模拟来阐明催化剂在电化学条件下的重构行为,并描绘其重构模式。利用对这种重构行为的深入了解,我们设计了一种高效的低配位铜基催化剂。所得合成催化剂在800 mA cm的电流密度下对乙烯生成表现出超过70%的令人印象深刻的法拉第效率(FE)。此外,它显示出强大的稳定性,在全电池系统中于3.5 V的电池电压下保持230小时的一致性能。我们的研究不仅加深了对设计高效二氧化碳还原反应(CORR)催化剂所涉及的活性位点的理解,还推动了用于工业应用的CO电解技术的发展。