IEEE Trans Med Imaging. 2024 Oct;43(10):3436-3448. doi: 10.1109/TMI.2024.3367167. Epub 2024 Oct 28.
Score-based generative model (SGM) has demonstrated great potential in the challenging limited-angle CT (LA-CT) reconstruction. SGM essentially models the probability density of the ground truth data and generates reconstruction results by sampling from it. Nevertheless, direct application of the existing SGM methods to LA-CT suffers multiple limitations. Firstly, the directional distribution of the artifacts attributing to the missing angles is ignored. Secondly, the different distribution properties of the artifacts in different frequency components have not been fully explored. These drawbacks would inevitably degrade the estimation of the probability density and the reconstruction results. After an in-depth analysis of these factors, this paper proposes a Wavelet-Inspired Score-based Model (WISM) for LA-CT reconstruction. Specifically, besides training a typical SGM with the original images, the proposed method additionally performs the wavelet transform and models the probability density in each wavelet component with an extra SGM. The wavelet components preserve the spatial correspondence with the original image while performing frequency decomposition, thereby keeping the directional property of the artifacts for further analysis. On the other hand, different wavelet components possess more specific contents of the original image in different frequency ranges, simplifying the probability density modeling by decomposing the overall density into component-wise ones. The resulting two SGMs in the image-domain and wavelet-domain are integrated into a unified sampling process under the guidance of the observation data, jointly generating high-quality and consistent LA-CT reconstructions. The experimental evaluation on various datasets consistently verifies the superior performance of the proposed method over the competing method.
基于得分的生成模型(SGM)在具有挑战性的有限角度 CT(LA-CT)重建中显示出巨大的潜力。SGM 本质上是对真实数据的概率密度建模,并通过从其中采样来生成重建结果。然而,现有的 SGM 方法直接应用于 LA-CT 会受到多种限制。首先,忽略了归因于缺失角度的伪影的方向分布。其次,伪影在不同频率分量中的不同分布特性尚未得到充分探索。这些缺点不可避免地会降低概率密度的估计和重建结果。在深入分析这些因素后,本文提出了一种用于 LA-CT 重建的基于小波的得分模型(WISM)。具体来说,除了用原始图像训练典型的 SGM 之外,所提出的方法还执行小波变换,并使用额外的 SGM 对每个小波分量中的概率密度进行建模。小波分量在执行频率分解的同时保持与原始图像的空间对应关系,从而保留伪影的方向特性以进行进一步分析。另一方面,不同的小波分量在不同的频率范围内具有原始图像更具体的内容,通过将整体密度分解为分量密度来简化概率密度建模。在观测数据的指导下,将图像域和小波域中的两个 SGM 集成到统一的采样过程中,共同生成高质量且一致的 LA-CT 重建。在各种数据集上的实验评估一致验证了所提出的方法优于竞争方法的优越性能。