IEEE Trans Med Imaging. 2024 Oct;43(10):3461-3475. doi: 10.1109/TMI.2024.3376414. Epub 2024 Oct 28.
Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of the iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from the intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
基于得分的生成模型(SGM)由于其出色的生成能力,在稀疏视角 CT 重建中崭露头角。在 SGM 重建方法中,数据一致性对于指导重建过程至关重要。然而,现有的数据一致性策略存在一定的局限性。首先,它使用迭代过程中重建图像的部分数据来更新图像,这会导致二次伪影,从而降低图像质量。此外,SGM 和数据一致性的更新被视为不同的阶段,而忽略了它们之间的相互依赖关系。此外,用于计算重建过程中梯度的参考图像是从中间结果而不是真实值中得出的。鉴于典型的 SGM 会因不同的随机噪声输入而产生不同的结果,我们提出了一种多通道优化生成模型(MOGM),通过将新颖的数据一致性项集成到随机微分方程模型中,实现了稳定的超稀疏视角 CT 重建。值得注意的是,这种数据一致性组件的独特之处在于它完全依赖原始数据来有效地限制生成结果。此外,我们开创了一种从当前迭代结果追溯到真实值的推断策略,通过基础理论支持来增强重建稳定性。我们还建立了一个多通道优化重建框架,其中使用传统的迭代技术来寻找重建解决方案。在来自数值模拟、临床心脏和绵羊肺的 23 个视图数据集上进行的定量和定性评估表明,MOGM 优于其他方法。即使只使用 10 个和 7 个视图进行重建,我们的方法也始终表现出色。