School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Haidian, Beijing 100876, China.
Sensors (Basel). 2022 Apr 22;22(9):3228. doi: 10.3390/s22093228.
The reconstruction of sparsely sampled projection data will generate obvious streaking artifacts, resulting in image quality degradation and affecting medical diagnosis results. Wavelet transform can effectively decompose directional components of image, so the artifact features and edge details with high directionality can be better detected in the wavelet domain. Therefore, a hybrid domain method based on wavelet transform is proposed in this paper for the sparse-view CT reconstruction. The reconstruction model combines wavelet, spatial, and radon domains to restore the projection consistency and enhance image details. In addition, the global distribution of artifacts requires the network to have a large receptive field, so that a multi-level wavelet transform network (MWCNN) is applied to the hybrid domain model. Wavelet transform is used in the encoding part of the network to reduce the size of feature maps instead of pooling operation and inverse wavelet transform is deployed in the decoding part to recover image details. The proposed method can achieve PSNR of 41.049 dB and SSIM of 0.958 with 120 projections of three angular intervals, and obtain the highest values in this paper. Through the results of numerical analysis and reconstructed images, it shows that the hybrid domain method is superior to the single-domain methods. At the same time, the multi-level wavelet transform model is more suitable for CT reconstruction than the single-level wavelet transform.
稀疏采样投影数据的重建会产生明显的条纹伪影,导致图像质量下降,影响医学诊断结果。小波变换可以有效地分解图像的方向分量,因此在小波域中可以更好地检测具有高方向性的伪影特征和边缘细节。因此,本文提出了一种基于小波变换的混合域方法,用于稀疏视图 CT 重建。该重建模型结合了小波、空间和 Radon 域,以恢复投影一致性并增强图像细节。此外,伪影的全局分布需要网络具有较大的感受野,因此将多级小波变换网络(MWCNN)应用于混合域模型中。小波变换用于网络的编码部分以减小特征图的大小,而不是池化操作,并且在解码部分部署逆小波变换以恢复图像细节。该方法可以在三个角度间隔的 120 个投影中实现 41.049dB 的 PSNR 和 0.958 的 SSIM,并获得本文中的最高值。通过数值分析和重建图像的结果表明,混合域方法优于单域方法。同时,多级小波变换模型比单级小波变换更适合 CT 重建。