Suppr超能文献

MISD-IR:基于物质-图像子空间分解的双能计算机断层扫描频谱估计迭代重建法

MISD-IR: material-image subspace decomposition-based iterative reconstruction with spectrum estimation for dual-energy computed tomography.

作者信息

Ren Junru, Wang Yizhong, Cai Ailong, Wang Shaoyu, Liang Ningning, Li Lei, Yan Bin

机构信息

Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China.

出版信息

Quant Imaging Med Surg. 2024 Jun 1;14(6):4155-4176. doi: 10.21037/qims-23-1681. Epub 2024 May 24.

Abstract

BACKGROUND

Dual-energy computed tomography (DECT) is a promising technique, which can provide unique capability for material quantification. The iterative reconstruction of material maps requires spectral information and its accuracy is affected by spectral mismatch. Simultaneously estimating the spectra and reconstructing material maps avoids extra workload on spectrum estimation and the negative impact of spectral mismatch. However, existing methods are not satisfactory in image detail preservation, edge retention, and convergence rate. The purpose of this paper was to mine the similarity between the reconstructed images and the material images to improve the imaging quality, and to design an effective iteration strategy to improve the convergence efficiency.

METHODS

The material-image subspace decomposition-based iterative reconstruction (MISD-IR) with spectrum estimation was proposed for DECT. MISD-IR is an optimized model combining spectral estimation and material reconstruction with fast convergence speed and promising noise suppression capability. We proposed to reconstruct the material maps based on extended simultaneous algebraic reconstruction techniques and estimation of the spectrum with model spectral. To stabilize the iteration and alleviate the influence of errors, we introduced a weighted proximal operator based on the block coordinate descending algorithm (WP-BCD). Furthermore, the reconstructed computed tomography (CT) images were introduced to suppress the noise based on subspace decomposition, which relies on non-local regularization to prevent noise accumulation.

RESULTS

In numerical experiments, the results of MISD-IR were closer to the ground truth compared with other methods. In real scanning data experiments, the results of MISD-IR showed sharper edges and details. Compared with other one-step iterative methods in the experiment, the running time of MISD-IR was reduced by 75%.

CONCLUSIONS

The proposed MISD-IR can achieve accurate material decomposition (MD) without known energy spectrum in advance, and has good retention of image edges and details. Compared with other one-step iterative methods, it has high convergence efficiency.

摘要

背景

双能计算机断层扫描(DECT)是一种很有前景的技术,它能够为物质定量分析提供独特的能力。物质图的迭代重建需要光谱信息,并且其准确性会受到光谱不匹配的影响。同时估计光谱并重建物质图可避免光谱估计的额外工作量以及光谱不匹配的负面影响。然而,现有方法在图像细节保留、边缘保持和收敛速度方面并不令人满意。本文的目的是挖掘重建图像与物质图像之间的相似性以提高成像质量,并设计一种有效的迭代策略来提高收敛效率。

方法

提出了基于物质图像子空间分解的带光谱估计的迭代重建方法(MISD - IR)用于双能计算机断层扫描。MISD - IR是一种将光谱估计和物质重建相结合的优化模型,具有快速收敛速度和良好的噪声抑制能力。我们建议基于扩展的同时代数重建技术重建物质图,并使用模型光谱估计光谱。为了稳定迭代并减轻误差的影响,我们引入了基于块坐标下降算法的加权近端算子(WP - BCD)。此外,引入重建的计算机断层扫描(CT)图像以基于子空间分解抑制噪声,该分解依赖于非局部正则化来防止噪声积累。

结果

在数值实验中,与其他方法相比,MISD - IR的结果更接近真实值。在实际扫描数据实验中,MISD - IR的结果显示出更清晰的边缘和细节。与实验中的其他一步迭代方法相比,MISD - IR的运行时间减少了75%。

结论

所提出的MISD - IR无需预先知道能谱即可实现准确的物质分解(MD),并且具有良好的图像边缘和细节保留能力。与其他一步迭代方法相比,它具有较高的收敛效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c798/11151249/242d1549bdcf/qims-14-06-4155-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验