Suppr超能文献

智能手机人工智能与医学专家:院前ST段抬高型心肌梗死诊断的比较研究

Smartphone AI vs. Medical Experts: A Comparative Study in Prehospital STEMI Diagnosis.

作者信息

Lee Seung Hyo, Hong Won Pyo, Kim Joonghee, Cho Youngjin, Lee Eunkyoung

机构信息

National Fire Agency Pre-hospital Emergency Medical Research TF, Sejong, Korea.

National Emergency Medical Center, National Medical Center, Seoul, Korea.

出版信息

Yonsei Med J. 2024 Mar;65(3):174-180. doi: 10.3349/ymj.2023.0341.

Abstract

PURPOSE

Prehospital telecardiology facilitates early ST-elevation myocardial infarction (STEMI) detection, yet its widespread implementation remains challenging. Extracting digital STEMI biomarkers from printed electrocardiograms (ECGs) using phone cameras could offer an affordable and scalable solution. This study assessed the feasibility of this approach with real-world prehospital ECGs.

MATERIALS AND METHODS

Patients suspected of having STEMI by emergency medical technicians (EMTs) were identified from a policy research dataset. A deep learning-based ECG analyzer (QCG™ analyzer) extracted a STEMI biomarker (qSTEMI) from prehospital ECGs. The biomarker was compared to a group of human experts, including five emergency medical service directors (board-certified emergency physicians) and three interventional cardiologists based on their consensus score (number of participants answering "yes" for STEMI). Non-inferiority of the biomarker was tested using a 0.100 margin of difference in sensitivity and specificity.

RESULTS

Among 53 analyzed patients (24 STEMI, 45.3%), the area under the receiver operating characteristic curve of qSTEMI and consensus score were 0.815 (0.691-0.938) and 0.736 (0.594-0.879), respectively (=0.081). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of qSTEMI were 0.750 (0.583-0.917), 0.862 (0.690-0.966), 0.826 (0.679-0.955), and 0.813 (0.714-0.929), respectively. For the consensus score, sensitivity, specificity, PPV, and NPV were 0.708 (0.500-0.875), 0.793 (0.655-0.966), 0.750 (0.600-0.941), and 0.760 (0.655-0.880), respectively. The 95% confidence interval of sensitivity and specificity differences between qSTEMI and consensus score were 0.042 (-0.099-0.182) and 0.103 (-0.043-0.250), respectively, confirming qSTEMI's non-inferiority.

CONCLUSION

The digital STEMI biomarker, derived from printed prehospital ECGs, demonstrated non-inferiority to expert consensus, indicating a promising approach for enhancing prehospital telecardiology.

摘要

目的

院前远程心脏病学有助于早期检测ST段抬高型心肌梗死(STEMI),但其广泛应用仍具有挑战性。使用手机摄像头从打印的心电图(ECG)中提取数字STEMI生物标志物可能提供一种经济实惠且可扩展的解决方案。本研究评估了这种方法在实际院前心电图中的可行性。

材料与方法

从一项政策研究数据集中识别出被紧急医疗技术人员(EMT)怀疑患有STEMI的患者。基于深度学习的心电图分析仪(QCG™分析仪)从院前心电图中提取STEMI生物标志物(qSTEMI)。将该生物标志物与一组专家进行比较,包括五位紧急医疗服务主任(获得董事会认证的急诊医师)和三位介入心脏病专家,根据他们的共识评分(对STEMI回答“是”的参与者数量)进行比较。使用灵敏度和特异性差异的0.100边际检验生物标志物的非劣效性。

结果

在53例分析患者中(24例STEMI,占45.3%),qSTEMI的受试者操作特征曲线下面积和共识评分分别为0.815(0.691 - 0.938)和0.736(0.594 - 0.879)(=0.081)。qSTEMI的灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)分别为0.750(0.583 - 0.917)、0.862(0.690 - 0.966)、0.826(0.679 - 0.955)和0.813(0.714 - 0.929)。对于共识评分,灵敏度、特异性、PPV和NPV分别为0.708(0.500 - 0.875)、0.793(0.655 - 0.966)、0.750(0.600 - 0.941)和0.760(0.655 - 0.880)。qSTEMI与共识评分之间灵敏度和特异性差异的95%置信区间分别为0.042(-0.099 - 0.182)和0.103(-0.043 - 0.250),证实了qSTEMI的非劣效性。

结论

从打印的院前心电图中衍生出的数字STEMI生物标志物显示出不劣于专家共识,表明这是一种增强院前远程心脏病学的有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b9/10896668/803aaab8fc86/ymj-65-174-g001.jpg

相似文献

1
Smartphone AI vs. Medical Experts: A Comparative Study in Prehospital STEMI Diagnosis.
Yonsei Med J. 2024 Mar;65(3):174-180. doi: 10.3349/ymj.2023.0341.
4
Diagnostic accuracy of prehospital electrocardiograms interpreted remotely by emergency physicians in myocardial infarction patients.
Am J Emerg Med. 2019 Jul;37(7):1242-1247. doi: 10.1016/j.ajem.2018.09.012. Epub 2018 Sep 6.
6
Serial prehospital 12-lead electrocardiograms increase identification of ST-segment elevation myocardial infarction.
Prehosp Emerg Care. 2012 Jan-Mar;16(1):109-14. doi: 10.3109/10903127.2011.614045. Epub 2011 Sep 28.
7
Detection of STEMI Using Prehospital Serial 12-Lead Electrocardiograms.
Prehosp Emerg Care. 2018 Jul-Aug;22(4):419-426. doi: 10.1080/10903127.2017.1399185. Epub 2018 Jan 16.
9
Information on myocardial ischemia and arrhythmias added by prehospital electrocardiograms.
Prehosp Emerg Care. 2013 Apr-Jun;17(2):187-92. doi: 10.3109/10903127.2012.755583. Epub 2013 Feb 15.
10
To transmit or not to transmit: how good are emergency medical personnel in detecting STEMI in patients with chest pain?
Can J Cardiol. 2012 Jul-Aug;28(4):432-7. doi: 10.1016/j.cjca.2012.04.008. Epub 2012 Jun 7.

引用本文的文献

本文引用的文献

6
Application of artificial intelligence to the electrocardiogram.
Eur Heart J. 2021 Dec 7;42(46):4717-4730. doi: 10.1093/eurheartj/ehab649.
8
Artificial intelligence-enhanced electrocardiography in cardiovascular disease management.
Nat Rev Cardiol. 2021 Jul;18(7):465-478. doi: 10.1038/s41569-020-00503-2. Epub 2021 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验