Suppr超能文献

与传统12导联心电图相比,智能手表心电图和人工智能在检测急性冠状动脉综合征中的应用

Smartwatch ECG and artificial intelligence in detecting acute coronary syndrome compared to traditional 12-lead ECG.

作者信息

Choi Jina, Kim Joonghee, Spaccarotella Carmen, Esposito Giovanni, Oh Il-Young, Cho Youngjin, Indolfi Ciro

机构信息

Cardiovascular Center, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.

Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.

出版信息

Int J Cardiol Heart Vasc. 2024 Dec 1;56:101573. doi: 10.1016/j.ijcha.2024.101573. eCollection 2025 Feb.

Abstract

BACKGROUND

Acute coronary syndromes (ACS) require prompt diagnosis through initial electrocardiograms (ECG), but ECG machines are not always accessible. Meanwhile, smartwatches offering ECG functionality have become widespread. This study evaluates the feasibility of an image-based ECG analysis artificial intelligence (AI) system with smartwatch-based multichannel, asynchronous ECG for diagnosing ACS.

METHODS

Fifty-six patients with ACS and 15 healthy participants were included, and their standard 12-lead and smartwatch-based 9-lead ECGs were analyzed. The ACS group was categorized into ACS with acute total occlusion (ACS-O(+), culprit stenosis ≥ 99 %, n = 44) and ACS without occlusion (ACS-O(-), culprit stenosis 70 % to < 99 %, n = 12) based on coronary angiography. A deep learning-based AI-ECG tool interpreting 2-dimensional ECG images generated probability scores for ST-elevation myocardial infarction (qSTEMI), ACS (qACS), and myocardial injury (qMI: troponin I > 0.1 ng/mL).

RESULTS

The AI-driven qSTEMI, qACS, and qMI demonstrated correlation coefficients of 0.882, 0.874, and 0.872 between standard and smartwatch ECGs (all  < 0.001). The qACS score effectively distinguished ACS-O(±) from control, with AUROC for both ECGs (0.991 for standard and 0.987 for smartwatch, P = 0.745). The AUROC of qSTEMI in identifying ACS-O(+) from control was 0.989 and 0.982 with 12-lead and smartwatch ( = 0.617). Discriminating ACS-O(+) from ACS-O(-) or control presented a slight challenge, with an AUROC for qSTEMI of 0.855 for 12-lead and 0.880 for smartwatch ECGs ( = 0.352).

CONCLUSION

AI-ECG scores from standard and smartwatch-based ECGs showed high concordance with comparable diagnostic performance in differentiating ACS-O(+) and ACS-O(-). With increasing accessibility smartwatch accessibility, they may hold promise for aiding ACS diagnosis, regardless of location.

摘要

背景

急性冠状动脉综合征(ACS)需要通过初始心电图(ECG)进行快速诊断,但并非总能获取心电图机。与此同时,具备心电图功能的智能手表已广泛普及。本研究评估了一种基于图像的心电图分析人工智能(AI)系统结合基于智能手表的多通道、异步心电图诊断ACS的可行性。

方法

纳入56例ACS患者和15名健康参与者,分析他们的标准12导联心电图和基于智能手表的9导联心电图。根据冠状动脉造影将ACS组分为急性完全闭塞性ACS(ACS-O(+),罪犯血管狭窄≥99%,n = 44)和非闭塞性ACS(ACS-O(-),罪犯血管狭窄70%至<99%,n = 12)。一种基于深度学习的AI-ECG工具对二维心电图图像进行解读,生成ST段抬高型心肌梗死(qSTEMI)、ACS(qACS)和心肌损伤(qMI:肌钙蛋白I>0.1 ng/mL)的概率评分。

结果

AI驱动的qSTEMI、qACS和qMI在标准心电图与智能手表心电图之间的相关系数分别为0.882、0.874和0.872(均<0.001)。qACS评分能有效区分ACS-O(±)与对照组,两种心电图的曲线下面积(AUROC)分别为0.991(标准心电图)和0.987(智能手表心电图),P = 0.745。qSTEMI在从对照组中识别ACS-O(+)时,12导联心电图和智能手表心电图的AUROC分别为0.989和0.982(P = 0.617)。区分ACS-O(+)与ACS-O(-)或对照组存在一定挑战,qSTEMI在12导联心电图和智能手表心电图中的AUROC分别为0.855和0.880(P = 0.352)。

结论

基于标准心电图和智能手表心电图的AI-ECG评分在区分ACS-O(+)和ACS-O(-)方面具有高度一致性和可比的诊断性能。随着智能手表的可及性不断提高,无论身处何地,它们在辅助ACS诊断方面可能具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7146/11648863/29208a89b43b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验