Suppr超能文献

人工智能心电图识别低射血分数患者的效果:一项实用、随机临床试验。

Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial.

机构信息

Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.

出版信息

Nat Med. 2021 May;27(5):815-819. doi: 10.1038/s41591-021-01335-4. Epub 2021 May 6.

Abstract

We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.

摘要

我们进行了一项实用的临床试验,旨在评估基于心电图(ECG)的人工智能(AI)临床决策支持工具是否能够早期诊断射血分数降低(EF),这种情况诊断不足但可治疗。在这项试验(NCT04000087)中,将 45 家诊所或医院的 120 个初级保健团队进行了聚类随机分组,分别纳入干预组(可获取 AI 结果;181 名临床医生)或对照组(常规护理;177 名临床医生)。共从 22641 名成年人(干预组 11573 名,对照组 11068 名)中获得了常规护理的心电图,这些人此前均无心力衰竭。主要结局是在心电图后 90 天内新诊断为 EF 降低(≤50%)。该试验达到了预先指定的主要终点,表明干预措施增加了整个队列中 EF 降低的诊断(对照组为 1.6%,干预组为 2.1%,优势比(OR)为 1.32(1.01-1.61),P=0.007),并增加了那些被确定为 EF 降低可能性较高的患者的诊断(即 AI-ECG 阳性,占整个队列的 6%)(对照组为 14.5%,干预组为 19.5%,OR 为 1.43(1.08-1.91),P=0.01)。在整个队列中,两组之间的超声心动图使用率相似(对照组为 18.2%,干预组为 19.2%,P=0.17);对于 AI-ECG 阳性的患者,干预组比对照组进行了更多的超声心动图检查(对照组为 38.1%,干预组为 49.6%,P<0.001)。这些结果表明,在常规初级保健环境中,使用基于 ECG 的 AI 算法可以实现 EF 降低的早期诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验