Suppr超能文献

一种用于分析出生体重与营养状况组合对疾病发展和疾病恢复影响的计算模型。

A computational model to analyze the impact of birth weight-nutritional status pair on disease development and disease recovery.

作者信息

Hussain Zakir, Borah Malaya Dutta

机构信息

Department of Computer Science and Engineering, National Institute of Technology Silchar, NIT Road, Cachar, Silchar, Assam 788010 India.

出版信息

Health Inf Sci Syst. 2024 Feb 17;12(1):10. doi: 10.1007/s13755-024-00272-z. eCollection 2024 Dec.

Abstract

PURPOSE

The purpose of this work is to analyse the combined impacts of birth weight and nutritional status on development and recovery of various types of diseases. This work aims to computationally establish the facts about the effects of individual birth weight-nutritional status pairs on disease development and disease recovery.

METHODS

This work designs a computational model to analyze the impact of birth weight-nutritional status pairs on disease development and disease recovery. Our model works in two phases. The first phase finds the best machine learning model to predict birth weight from "Child Birth Weight Dataset" available at IEEE Dataport (https://dx.doi.org/10.21227/dvd4-3232). The second phase combines the predicted birth weight labels with nutritional status labels and establishes the effects using differential equations.

RESULTS

The experimental results find Gradient boosting (GB) to work the best with Information gain (IGT) and Support Vector Machine (SVM) with Chi-square test (CST) for predicting the birth weights. The simulated results establish that "normal birth weight and normal nutritional status" is the best pair for resisting disease development as well as enhancing disease recovery. The results also depict that "low birth weight and malnutrition" is the worst pair for disease development while "high birth weight and malnutrition" is the worst combination for disease recovery.

CONCLUSION

The findings computationally establish the facts about the effects of birth weight-nutritional status pairs on disease development and disease recovery. As a social implication, this study can spread awareness about the importance of birth weight and nutritional status. The outcome can be helpful for the concerned authority in making decisions on healthcare cost and expenditure.

摘要

目的

本研究旨在分析出生体重和营养状况对各类疾病发展及康复的综合影响。本研究旨在通过计算确定个体出生体重 - 营养状况组合对疾病发展和疾病康复的影响。

方法

本研究设计了一个计算模型来分析出生体重 - 营养状况组合对疾病发展和疾病康复的影响。我们的模型分两个阶段运行。第一阶段从IEEE数据端口(https://dx.doi.org/10.21227/dvd4-3232)提供的“儿童出生体重数据集”中找到最佳机器学习模型来预测出生体重。第二阶段将预测的出生体重标签与营养状况标签相结合,并使用微分方程确定影响。

结果

实验结果发现梯度提升(GB)与信息增益(IGT)配合效果最佳,支持向量机(SVM)与卡方检验(CST)配合用于预测出生体重效果最佳。模拟结果表明,“正常出生体重和正常营养状况”是抵抗疾病发展以及促进疾病康复的最佳组合。结果还表明,“低出生体重和营养不良”是疾病发展最不利的组合,而“高出生体重和营养不良”是疾病康复最不利的组合。

结论

研究结果通过计算确定了出生体重 - 营养状况组合对疾病发展和疾病康复影响的事实。作为一项社会意义,本研究可以传播关于出生体重和营养状况重要性的认识。这一结果有助于相关部门在医疗保健成本和支出方面做出决策。

相似文献

4
Nutrition support in hospitalised adults at nutritional risk.住院有营养风险的成年人的营养支持。
Cochrane Database Syst Rev. 2017 May 19;5(5):CD011598. doi: 10.1002/14651858.CD011598.pub2.
8
Nutritional support for liver disease.肝病的营养支持
Cochrane Database Syst Rev. 2012 May 16;2012(5):CD008344. doi: 10.1002/14651858.CD008344.pub2.

本文引用的文献

7

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验