Suppr超能文献

利用机器学习算法估算阿联酋的婴儿出生体重和低出生体重分类。

Infant birth weight estimation and low birth weight classification in United Arab Emirates using machine learning algorithms.

机构信息

Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, 15551, Al Ain, United Arab Emirates.

Big Data Analytics Center, United Arab Emirates University, 15551, Al Ain, United Arab Emirates.

出版信息

Sci Rep. 2022 Jul 15;12(1):12110. doi: 10.1038/s41598-022-14393-6.

Abstract

Accurate prediction of a newborn's birth weight (BW) is a crucial determinant to evaluate the newborn's health and safety. Infants with low BW (LBW) are at a higher risk of serious short- and long-term health outcomes. Over the past decade, machine learning (ML) techniques have shown a successful breakthrough in the field of medical diagnostics. Various automated systems have been proposed that use maternal features for LBW prediction. However, each proposed system uses different maternal features for LBW classification and estimation. Therefore, this paper provides a detailed setup for BW estimation and LBW classification. Multiple subsets of features were combined to perform predictions with and without feature selection techniques. Furthermore, the synthetic minority oversampling technique was employed to oversample the minority class. The performance of 30 ML algorithms was evaluated for both infant BW estimation and LBW classification. Experiments were performed on a self-created dataset with 88 features. The dataset was obtained from 821 women from three hospitals in the United Arab Emirates. Different performance metrics, such as mean absolute error and mean absolute percent error, were used for BW estimation. Accuracy, precision, recall, F-scores, and confusion matrices were used for LBW classification. Extensive experiments performed using five-folds cross validation show that the best weight estimation was obtained using Random Forest algorithm with mean absolute error of 294.53 g while the best classification performance was obtained using Logistic Regression with SMOTE oversampling techniques that achieved accuracy, precision, recall and F1 score of 90.24%, 87.6%, 90.2% and 0.89, respectively. The results also suggest that features such as diabetes, hypertension, and gestational age, play a vital role in LBW classification.

摘要

准确预测新生儿的出生体重(BW)是评估新生儿健康和安全的关键决定因素。低出生体重(LBW)婴儿患严重短期和长期健康问题的风险更高。在过去的十年中,机器学习(ML)技术在医学诊断领域取得了成功突破。已经提出了各种自动化系统,这些系统使用产妇特征来预测 LBW。然而,每个提出的系统都使用不同的产妇特征来进行 LBW 分类和估计。因此,本文提供了 BW 估计和 LBW 分类的详细设置。组合了多个特征子集,使用和不使用特征选择技术进行预测。此外,还采用了合成少数过采样技术对少数类进行过采样。评估了 30 种 ML 算法在婴儿 BW 估计和 LBW 分类方面的性能。实验是在一个由来自阿拉伯联合酋长国的三家医院的 821 名妇女组成的自创建数据集上进行的。使用了不同的性能指标,如平均绝对误差和平均绝对百分比误差,来进行 BW 估计。使用准确度、精确度、召回率、F 分数和混淆矩阵来进行 LBW 分类。使用五重交叉验证进行的广泛实验表明,使用随机森林算法进行最佳的体重估计,平均绝对误差为 294.53 克,而使用具有 SMOTE 过采样技术的逻辑回归算法进行最佳的分类性能,获得了 90.24%、87.6%、90.2%和 0.89 的准确度、精确度、召回率和 F1 分数。结果还表明,糖尿病、高血压和妊娠期等特征在 LBW 分类中起着至关重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7b/9287292/31d60de30626/41598_2022_14393_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验