Hooper Reagan X, Wertz Ashlee E, Shafaat Hannah S, Holland Patrick L
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511.
Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH-43210.
Chemistry. 2024 Apr 25;30(24):e202304072. doi: 10.1002/chem.202304072. Epub 2024 Mar 26.
Biological N reduction occurs at sulfur-rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N through PCET. Here, we test the feasibility of using synthetic sulfur-supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ-η : η-diazene (HN=NH) is the microscopic reverse of the proposed N fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two-electron oxidation of [{Fe(PPr)L}(μ-η : η-NH)] (L=tetradentate SSSS ligand) at -78 °C as [{Fe(PPr)L}(μ-η : η-N)], which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr)L}(η-NH)]. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe redox potential, indicating that the reverse N protonation would be too endergonic to proceed. This system establishes the "ground rules" for designing reversible N/NH interconversion through PCET, such as tuning the redox potentials of the metal sites.
生物固氮发生在富含硫的多铁位点,一条有趣的潜在途径是通过质子耦合电子转移(PCET)对桥连氮进行协同双还原/质子化。在此,我们测试了使用合成的硫负载二铁配合物来模拟该途径的可行性。来自μ-η : η-重氮烯(HN=NH)的氧化质子转移是所提出的固氮途径的微观逆过程,揭示了该过程的能量学。此前,塞尔曼将[{Fe(PPr)L}(μ-η : η-NH)](L = 四齿SSSS配体)在 -78 °C下进行双电子氧化得到的紫色亚稳产物指定为[{Fe(PPr)L}(μ-η : η-N)]【注:此处疑似原文有误,根据上下文推测,此处应为[{Fe(PPr)L}(μ-η : η-N)]】,它将来自重氮烯到支撑配体硫原子的双PCET。结合密度泛函理论(DFT)计算使用共振拉曼光谱、穆斯堡尔光谱、核磁共振光谱和电子顺磁共振光谱,我们表明该产物不是氮配合物。相反,数据与光谱观察到的物种最一致的是单核铁(III)重氮烯配合物[{Fe(PPr)L}(η-NH)]。计算表明,所提出的双PCET具有的势垒在反应温度下对于质子转移来说过高。此外,由于铁的氧化还原电位高,来自桥连重氮烯的PCET是高度放能的,这表明氮的逆质子化将过于吸能而无法进行。该系统为通过PCET设计可逆的氮/氨相互转化建立了“基本规则”,例如调节金属位点的氧化还原电位。 【注:最后一句中“氮的逆质子化”根据前文推测,原文可能是“桥连氮的逆质子化”,此处译文按照推测进行了调整,以保证逻辑通顺】