Suppr超能文献

评估铁硫配合物中二氮烯与氮的相互转化

Evaluating Diazene to N Interconversion at Iron-Sulfur Complexes.

作者信息

Hooper Reagan X, Wertz Ashlee E, Shafaat Hannah S, Holland Patrick L

机构信息

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511.

Department of Chemistry and Biochemistry, The Ohio State University, 100 W 18th Ave, Columbus, OH-43210.

出版信息

Chemistry. 2024 Apr 25;30(24):e202304072. doi: 10.1002/chem.202304072. Epub 2024 Mar 26.

Abstract

Biological N reduction occurs at sulfur-rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N through PCET. Here, we test the feasibility of using synthetic sulfur-supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ-η : η-diazene (HN=NH) is the microscopic reverse of the proposed N fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two-electron oxidation of [{Fe(PPr)L}(μ-η : η-NH)] (L=tetradentate SSSS ligand) at -78 °C as [{Fe(PPr)L}(μ-η : η-N)], which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr)L}(η-NH)]. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe redox potential, indicating that the reverse N protonation would be too endergonic to proceed. This system establishes the "ground rules" for designing reversible N/NH interconversion through PCET, such as tuning the redox potentials of the metal sites.

摘要

生物固氮发生在富含硫的多铁位点,一条有趣的潜在途径是通过质子耦合电子转移(PCET)对桥连氮进行协同双还原/质子化。在此,我们测试了使用合成的硫负载二铁配合物来模拟该途径的可行性。来自μ-η : η-重氮烯(HN=NH)的氧化质子转移是所提出的固氮途径的微观逆过程,揭示了该过程的能量学。此前,塞尔曼将[{Fe(PPr)L}(μ-η : η-NH)](L = 四齿SSSS配体)在 -78 °C下进行双电子氧化得到的紫色亚稳产物指定为[{Fe(PPr)L}(μ-η : η-N)]【注:此处疑似原文有误,根据上下文推测,此处应为[{Fe(PPr)L}(μ-η : η-N)]】,它将来自重氮烯到支撑配体硫原子的双PCET。结合密度泛函理论(DFT)计算使用共振拉曼光谱、穆斯堡尔光谱、核磁共振光谱和电子顺磁共振光谱,我们表明该产物不是氮配合物。相反,数据与光谱观察到的物种最一致的是单核铁(III)重氮烯配合物[{Fe(PPr)L}(η-NH)]。计算表明,所提出的双PCET具有的势垒在反应温度下对于质子转移来说过高。此外,由于铁的氧化还原电位高,来自桥连重氮烯的PCET是高度放能的,这表明氮的逆质子化将过于吸能而无法进行。该系统为通过PCET设计可逆的氮/氨相互转化建立了“基本规则”,例如调节金属位点的氧化还原电位。 【注:最后一句中“氮的逆质子化”根据前文推测,原文可能是“桥连氮的逆质子化”,此处译文按照推测进行了调整,以保证逻辑通顺】

相似文献

1
Evaluating Diazene to N Interconversion at Iron-Sulfur Complexes.
Chemistry. 2024 Apr 25;30(24):e202304072. doi: 10.1002/chem.202304072. Epub 2024 Mar 26.
2
Synthesis and Characterization of Bridging-Diazene Diiron Half-Sandwich Complexes: The Role of Sulfur Hydrogen Bonding.
Inorg Chem. 2024 Jul 29;63(30):14040-14049. doi: 10.1021/acs.inorgchem.4c01783. Epub 2024 Jul 15.
3
Construction and Function of Thiolate-Bridged Diiron NH Nitrogenase Model Complexes.
Acc Chem Res. 2024 Jul 2;57(13):1761-1776. doi: 10.1021/acs.accounts.4c00068. Epub 2024 Jun 11.
5
Nitrogenase-Relevant Reactivity of a Synthetic Iron-Sulfur-Carbon Site.
J Am Chem Soc. 2019 Aug 21;141(33):13148-13157. doi: 10.1021/jacs.9b05353. Epub 2019 Aug 12.
6
Uncovering Redox Non-innocent Hydrogen-Bonding in Cu(I)-Diazene Complexes.
J Am Chem Soc. 2021 Oct 6;143(39):15960-15974. doi: 10.1021/jacs.1c04108. Epub 2021 Sep 21.
9
Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates.
Acc Chem Res. 2018 Sep 18;51(9):2014-2022. doi: 10.1021/acs.accounts.8b00299. Epub 2018 Sep 4.
10
Characterization of structurally unusual diiron N(x)H(y) complexes.
J Am Chem Soc. 2009 Aug 5;131(30):10358-9. doi: 10.1021/ja903967z.

本文引用的文献

1
A voltammetric study of nitrogenase MoFe-protein using low-potential electron transfer mediators.
Bioelectrochemistry. 2024 Feb;155:108575. doi: 10.1016/j.bioelechem.2023.108575. Epub 2023 Sep 17.
2
Understanding the Electronic Structure Basis for N Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation.
Inorg Chem. 2023 Apr 10;62(14):5357-5375. doi: 10.1021/acs.inorgchem.2c03967. Epub 2023 Mar 29.
3
The binding of reducible N in the reaction domain of nitrogenase.
Dalton Trans. 2023 Feb 14;52(7):2013-2026. doi: 10.1039/d2dt03599e.
4
Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase.
Chem Rev. 2022 Jul 27;122(14):11900-11973. doi: 10.1021/acs.chemrev.1c00914. Epub 2022 Jul 18.
5
Cobalt-Carbon Bonding in a Salen-Supported Cobalt(IV) Alkyl Complex Postulated in Oxidative MHAT Catalysis.
J Am Chem Soc. 2022 Jun 15;144(23):10361-10367. doi: 10.1021/jacs.2c02128. Epub 2022 Jun 3.
6
From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic.
Wiley Interdiscip Rev Comput Mol Sci. 2022 Sep-Oct;12(5):e1607. doi: 10.1002/wcms.1607. Epub 2022 Mar 5.
7
Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):12308-12369. doi: 10.1021/acs.chemrev.1c00862. Epub 2022 May 20.
8
A guide to secondary coordination sphere editing.
Chem Soc Rev. 2022 Mar 21;51(6):1861-1880. doi: 10.1039/d2cs00022a.
9
Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure.
Inorg Chem. 2022 Jan 24;61(3):1644-1658. doi: 10.1021/acs.inorgchem.1c03499. Epub 2022 Jan 5.
10
Uncovering Redox Non-innocent Hydrogen-Bonding in Cu(I)-Diazene Complexes.
J Am Chem Soc. 2021 Oct 6;143(39):15960-15974. doi: 10.1021/jacs.1c04108. Epub 2021 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验