School of Chemistry, UNSW Sydney, Australia.
Dalton Trans. 2023 Feb 14;52(7):2013-2026. doi: 10.1039/d2dt03599e.
The binding of N to FeMo-co, the catalytic site of the enzyme nitrogenase, is central to the conversion to NH, but also has a separate role in promoting the N-dependent HD reaction (D + 2H + 2e → 2HD). The protein surrounding FeMo-co contains a clear channel for ingress of N, directly towards the -coordination position of Fe2, a position which is outside the catalytic reaction domain. This led to the hypothesis [I. Dance, ., 2022, , 12717] of 'promotional' N bound at -Fe2, and a second 'reducible' N bound in the reaction domain, specifically the -coordination position of Fe2 or Fe6. The range of possibilities for the binding of reducible N in the presence of bound promotional N is described here, using density functional simulations with a 486 atom model of the active site and surrounding protein. The pathway for ingress of the second N through protein, past the first N at -Fe2, and tumbling into the binding domain between Fe2 and Fe6, is described. The calculations explore 24 structures involving 6 different forms of hydrogenated FeMo-co, including structures with S2BH unhooked from Fe2 but tethered to Fe6. The calculations use the most probable electronic states. End-on (η) binding of N at the position of either Fe2 or Fe6 is almost invariably exothermic, with binding potential energies ranging up to -18 kcal mol. Many structures have binding energies in the range -6 to -14 kcal mol. The relevant entropic penalty for N binding from a diffusible position within the protein is estimated to be 4 kcal mol, and so the binding free energies for reducible N are suitably negative. N binding at -Fe2 is stronger than at -Fe6 in three of the six structure categories. In many cases the reaction domain containing reducible N is expanded. These results inform computational simulation of the subsequent steps in which surrounding H atoms transfer to reducible N.
氮与酶氮固定酶的催化位点 FeMo-co 的结合对于转化为 NH 至关重要,但也在促进依赖 N 的 HD 反应(D + 2H + 2e → 2HD)方面发挥着单独的作用。围绕 FeMo-co 的蛋白质含有一个清晰的通道,用于 N 的进入,直接指向 Fe2 的 -配位位置,该位置在催化反应域之外。这导致了这样的假设[I. Dance,., 2022,, 12717],即“促进”的 N 结合在 -Fe2 上,以及第二个“还原”的 N 结合在反应域中,特别是在 Fe2 或 Fe6 的 -配位位置。在这里,使用活性位点和周围蛋白质的 486 原子模型的密度泛函模拟,描述了在结合促进性 N 的情况下还原性 N 结合的各种可能性。描述了第二个 N 通过蛋白质进入的途径,经过 -Fe2 上的第一个 N,并翻滚到 Fe2 和 Fe6 之间的结合域。该计算探索了 24 种结构,涉及 6 种不同形式的氢化 FeMo-co,包括 S2BH 从 Fe2 上解开但与 Fe6 相连的结构。计算使用最可能的电子态。N 在 Fe2 或 Fe6 的位置以端接(η)方式结合几乎总是放热的,结合势能高达-18 kcal mol。许多结构的结合能在-6 到-14 kcal mol 范围内。从蛋白质内可扩散位置结合 N 的相关熵罚估计为 4 kcal mol,因此还原性 N 的结合自由能是负的。在六个结构类别中的三个中,-Fe2 上的 N 结合比 -Fe6 上的 N 结合更强。在许多情况下,含有还原性 N 的反应域会扩大。这些结果为随后步骤中周围 H 原子转移到还原性 N 的计算模拟提供了信息。