Suppr超能文献

钯和镍催化羰基化合物通过有机锌中间体进行α,β-脱氢反应的综合机理分析

Comprehensive Mechanistic Analysis of Palladium- and Nickel-Catalyzed α,β-Dehydrogenation of Carbonyls via Organozinc Intermediates.

作者信息

Bodnar Alexandra K, Szewczyk Suzanne M, Sun Yang, Chen Yifeng, Huang Anson X, Newhouse Timothy R

机构信息

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States.

出版信息

J Org Chem. 2024 Mar 1;89(5):3123-3132. doi: 10.1021/acs.joc.3c02572. Epub 2024 Feb 20.

Abstract

Introducing degrees of unsaturation into small molecules is a central transformation in organic synthesis. A strategically useful category of this reaction type is the conversion of alkanes into alkenes for substrates with an adjacent electron-withdrawing group. An efficient strategy for this conversion has been deprotonation to form a stabilized organozinc intermediate that can be subjected to α,β-dehydrogenation through palladium or nickel catalysis. This general reactivity blueprint presents a window to uncover and understand the reactivity of Pd- and Ni-enolates. Within this context, it was determined that β-hydride elimination is slow and proceeds via concerted -elimination. One interesting finding is that β-hydride elimination can be preferred to a greater extent than C-C bond formation for Ni, more so than with Pd, which defies the generally assumed trends that β-hydride elimination is more facile with Pd than Ni. The discussion of these findings is informed by KIE experiments, DFT calculations, stoichiometric reactions, and rate studies. Additionally, this report details an in-depth analysis of a methodological manifold for practical dehydrogenation and should enable its application to challenges in organic synthesis.

摘要

在小分子中引入不饱和度是有机合成中的核心转化反应。这种反应类型中一类具有战略实用性的反应是将烷烃转化为烯烃,适用于带有相邻吸电子基团的底物。实现这种转化的一种有效策略是去质子化以形成稳定的有机锌中间体,该中间体可通过钯或镍催化进行α,β-脱氢反应。这种通用的反应性蓝图为揭示和理解钯和镍烯醇盐的反应性提供了一个窗口。在此背景下,已确定β-氢消除反应缓慢且通过协同消除进行。一个有趣的发现是,对于镍而言,β-氢消除比碳-碳键形成更占优势,比钯的情况更明显,这与通常认为的钯比镍更容易发生β-氢消除的趋势相悖。对这些发现的讨论基于动力学同位素效应(KIE)实验、密度泛函理论(DFT)计算、化学计量反应和速率研究。此外,本报告详细深入分析了一种用于实际脱氢反应的方法体系,应能使其应用于有机合成中的各种挑战。

相似文献

2
Dehydrogenative Pd and Ni Catalysis for Total Synthesis.
Acc Chem Res. 2021 Mar 2;54(5):1118-1130. doi: 10.1021/acs.accounts.0c00787. Epub 2021 Feb 16.
3
Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes: Bond Forming at a High-Valent Palladium Center.
Acc Chem Res. 2016 Nov 15;49(11):2413-2423. doi: 10.1021/acs.accounts.6b00328. Epub 2016 Oct 14.
4
Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization.
Acc Chem Res. 2020 Apr 21;53(4):906-919. doi: 10.1021/acs.accounts.0c00032. Epub 2020 Apr 2.
5
Nickel(0)-Induced β-H Elimination of Magnesium Alkyls: Formation and Reactivity of Heterometallic Hydrides.
Inorg Chem. 2020 Sep 21;59(18):13473-13480. doi: 10.1021/acs.inorgchem.0c01885. Epub 2020 Sep 2.
6
A facile synthesis of α,β-unsaturated imines via palladium-catalyzed dehydrogenation.
Nat Commun. 2024 May 21;15(1):4329. doi: 10.1038/s41467-024-48737-9.
7
Transition Metal (Ni, Cu, Pd)-Catalyzed Alkene Dicarbofunctionalization Reactions.
Acc Chem Res. 2021 Sep 7;54(17):3415-3437. doi: 10.1021/acs.accounts.1c00329. Epub 2021 Aug 12.
9
Origins of Stereospecificity and Divergent Reactivity of Pd-Catalyzed Cross Coupling with α,α-Disubstituted Alkenyl Hydrazones.
J Org Chem. 2022 Nov 18;87(22):15608-15617. doi: 10.1021/acs.joc.2c02188. Epub 2022 Nov 1.
10
Transition-Metal (Pd, Ni, Mn)-Catalyzed C-C Bond Constructions Involving Unactivated Alkyl Halides and Fundamental Synthetic Building Blocks.
Acc Chem Res. 2019 Apr 16;52(4):1134-1144. doi: 10.1021/acs.accounts.9b00044. Epub 2019 Mar 25.

本文引用的文献

2
Multimetallic-Catalyzed C-C Bond-Forming Reactions: From Serendipity to Strategy.
J Am Chem Soc. 2023 Mar 29;145(12):6596-6614. doi: 10.1021/jacs.2c08615. Epub 2023 Mar 13.
3
Multiple remote C(sp)-H functionalizations of aliphatic ketones bimetallic Cu-Pd catalyzed successive dehydrogenation.
Chem Sci. 2022 Nov 14;13(46):13843-13850. doi: 10.1039/d2sc05370e. eCollection 2022 Nov 30.
4
Photoinduced Desaturation of Amides by Palladium Catalysis.
Org Lett. 2022 Sep 9;24(35):6460-6465. doi: 10.1021/acs.orglett.2c02594. Epub 2022 Aug 30.
5
Cobalt-catalyzed chemoselective dehydrogenation through radical translocation under visible light.
Chem Sci. 2022 Jun 15;13(26):7947-7954. doi: 10.1039/d2sc02291e. eCollection 2022 Jul 6.
6
One-Step Synthesis of β-Alkylidene-γ-lactones via Ligand-Enabled β,γ-Dehydrogenation of Aliphatic Acids.
J Am Chem Soc. 2022 Jul 20;144(28):12924-12933. doi: 10.1021/jacs.2c04779. Epub 2022 Jul 8.
7
Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C-H activation.
Science. 2021 Dec 3;374(6572):1281-1285. doi: 10.1126/science.abl3939. Epub 2021 Nov 11.
8
Electrochemically driven desaturation of carbonyl compounds.
Nat Chem. 2021 Apr;13(4):367-372. doi: 10.1038/s41557-021-00640-2. Epub 2021 Mar 23.
9
Dehydrogenative Pd and Ni Catalysis for Total Synthesis.
Acc Chem Res. 2021 Mar 2;54(5):1118-1130. doi: 10.1021/acs.accounts.0c00787. Epub 2021 Feb 16.
10
Iron-Catalyzed α,β-Dehydrogenation of Carbonyl Compounds.
Org Lett. 2021 Mar 5;23(5):1611-1615. doi: 10.1021/acs.orglett.1c00043. Epub 2021 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验