Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States.
Acc Chem Res. 2021 Mar 2;54(5):1118-1130. doi: 10.1021/acs.accounts.0c00787. Epub 2021 Feb 16.
The development of novel synthetic methods remains a cornerstone in simplifying complex molecule synthesis. Progress in the field of transition metal catalysis has enabled new mechanistic strategies to achieve difficult chemical transformations, increased the value of abundant chemical building blocks, and pushed the boundaries of creative and strategic route design to improve step economy in multistep synthesis. Methodologies to introduce an olefin into saturated molecules continue to be essential transformations because of the plethora of reactions available for alkene functionalization. Of particular importance are dehydrogenation reactions adjacent to electron-withdrawing groups such as carbonyls, which advantageously provide activated olefins that can be regioselectively manipulated. Palladium catalysis occupies a central role in the most widely adopted carbonyl dehydrogenation reactions, but limits to the scope of these protocols persist.In this Account, we describe our group's contributions to the area of transition-metal-catalyzed dehydrogenation using palladium catalysis and more sustainable and economical nickel catalysis. These metals are used in conjunction with allyl and aryl halides or pseudohalides that serve as oxidants to access a unique mechanistic approach for one-step α,β-dehydrogenation of various electron-withdrawing groups, including ketones, esters, nitriles, amides, carboxylic acids, and electron-deficient heteroarenes. The pivotal reaction parameters that can be modified to influence reaction efficiency are highlighted, including base and oxidant structure as well as ligand and salt additive effects. This discussion is expected to serve as a guide for troubleshooting challenging dehydrogenation reactions and provide insight for future reaction development in this area.In addition to enabling dehydrogenation reactions, our group's allyl-Pd and -Ni chemistry can be used for C-C and C-X bond-forming reactions, providing novel disconnections with practical applications for expediting multistep synthesis. These transformations include a telescoped process for ketone α,β-vicinal difunctionalization; an oxidative enone β-functionalization, including β-stannylation, β-silylation, and β-alkylation; and an oxidative cycloalkenylation between unstabilized ketone enolates and unactivated alkenes. These bond-forming methodologies broaden the range of transformations accessible from abundant ketone, enone, and alkene moieties. Both the dehydrogenation and C-C and C-X bond-forming methodologies have been implemented in our group's total synthesis campaigns to provide step-efficient synthetic routes toward diverse natural products.Through the lens of multistep synthesis, the utility and robustness of our dehydrogenation and dehydrogenative functionalization methodologies can be better appreciated, and we hope that this Account will inspire practitioners to apply our methodologies to their own synthetic challenges.
新型合成方法的发展仍然是简化复杂分子合成的基石。过渡金属催化领域的进展使新的机理策略能够实现困难的化学转化,增加了丰富的化学构建块的价值,并推动了创造性和战略路线设计的边界,以提高多步合成中的步骤经济性。由于烯烃官能化的反应很多,因此将烯烃引入饱和分子中的方法仍然是必不可少的转化。在电子受主如羰基相邻的脱氢反应尤其重要,因为它们提供了有利的活化烯烃,可以进行区域选择性操作。钯催化在最广泛采用的羰基脱氢反应中占据核心地位,但这些方案的局限性仍然存在。
在本报告中,我们描述了我们小组在使用钯催化和更可持续和经济的镍催化的过渡金属催化脱氢领域的贡献。这些金属与烯丙基和芳基卤化物或拟卤化物一起使用,作为氧化剂,可用于各种吸电子基团(包括酮、酯、腈、酰胺、羧酸和缺电子杂芳烃)的一步α,β-脱氢的独特机理方法。突出显示了可以修改的关键反应参数,包括碱和氧化剂结构以及配体和盐添加剂效应。预计这一讨论将作为解决有挑战性的脱氢反应的指南,并为该领域未来的反应发展提供见解。
除了能够进行脱氢反应外,我们小组的烯丙基-Pd 和 -Ni 化学还可用于 C-C 和 C-X 键形成反应,为加速多步合成提供新颖的断开连接。这些转化包括酮α,β-邻位双官能化的缩合过程;包括β-锡化、β-硅化和β-烷基化在内的氧化烯酮β-官能化;以及未稳定酮烯醇盐与未活化烯烃之间的氧化环烯化。这些成键方法拓宽了从丰富的酮、烯酮和烯烃部分可获得的转化范围。脱氢和 C-C 和 C-X 键形成方法都已在我们小组的全合成活动中得到实施,为各种天然产物提供了高效的合成路线。
通过多步合成的视角,可以更好地欣赏我们的脱氢和脱氢官能化方法的实用性和稳健性,我们希望本报告将激发从业者将我们的方法应用于自己的合成挑战。