文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Skeletal muscle regeneration after extensive cryoinjury of caudal myomeres in adult zebrafish.

作者信息

Oudhoff Hendrik, Hisler Vincent, Baumgartner Florian, Rees Lana, Grepper Dogan, Jaźwińska Anna

机构信息

Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.

出版信息

NPJ Regen Med. 2024 Feb 20;9(1):8. doi: 10.1038/s41536-024-00351-5.


DOI:10.1038/s41536-024-00351-5
PMID:38378693
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10879182/
Abstract

Skeletal muscles can regenerate after minor injuries, but severe structural damage often leads to fibrosis in mammals. Whether adult zebrafish possess the capacity to reproduce profoundly destroyed musculature remains unknown. Here, a new cryoinjury model revealed that several myomeres efficiently regenerated within one month after wounding the zebrafish caudal peduncle. Wound clearance involved accumulation of the selective autophagy receptor p62, an immune response and Collagen XII deposition. New muscle formation was associated with proliferation of Pax7 expressing muscle stem cells, which gave rise to MyoD1 positive myogenic precursors, followed by myofiber differentiation. Monitoring of slow and fast muscles revealed their coordinated replacement in the superficial and profound compartments of the myomere. However, the final boundary between the muscular components was imperfectly recapitulated, allowing myofibers of different identities to intermingle. The replacement of connective with sarcomeric tissues required TOR signaling, as rapamycin treatment impaired new muscle formation, leading to persistent fibrosis. The model of zebrafish myomere restoration may provide new medical perspectives for treatment of traumatic injuries.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/e54864c582b7/41536_2024_351_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/3ee549fa71ba/41536_2024_351_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/9abdd804f061/41536_2024_351_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/1e4c494f9b30/41536_2024_351_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/eb51ab1d96d2/41536_2024_351_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/7b8aa6478d16/41536_2024_351_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/313619f11cf4/41536_2024_351_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/514c5bd245c8/41536_2024_351_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/231b4456cf4a/41536_2024_351_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/846512aed188/41536_2024_351_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/e54864c582b7/41536_2024_351_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/3ee549fa71ba/41536_2024_351_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/9abdd804f061/41536_2024_351_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/1e4c494f9b30/41536_2024_351_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/eb51ab1d96d2/41536_2024_351_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/7b8aa6478d16/41536_2024_351_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/313619f11cf4/41536_2024_351_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/514c5bd245c8/41536_2024_351_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/231b4456cf4a/41536_2024_351_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/846512aed188/41536_2024_351_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b57/10879182/e54864c582b7/41536_2024_351_Fig10_HTML.jpg

相似文献

[1]
Skeletal muscle regeneration after extensive cryoinjury of caudal myomeres in adult zebrafish.

NPJ Regen Med. 2024-2-20

[2]
A Cryoinjury Model for Studying Skeletal Muscle Regeneration of the Caudal Peduncle in Adult Zebrafish.

J Vis Exp. 2023-7-7

[3]
Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair.

Dis Model Mech. 2016-6-1

[4]
Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish.

Dev Biol. 2017-4-15

[5]
Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications.

Curr Pharm Des. 2010

[6]
Parallels between oncogene-driven cardiac hyperplasia and heart regeneration in zebrafish.

Development. 2023-6-15

[7]
Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors.

Elife. 2023-11-14

[8]
Heterogeneous activation of a slow myosin gene in proliferating myoblasts and differentiated single myofibers.

Dev Biol. 2015-6-1

[9]
Pax7 is necessary and sufficient for the myogenic specification of CD45+:Sca1+ stem cells from injured muscle.

PLoS Biol. 2004-5

[10]
The zebrafish heart regenerates after cryoinjury-induced myocardial infarction.

BMC Dev Biol. 2011-4-7

引用本文的文献

[1]
Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery.

Calcif Tissue Int. 2024-12

[2]
BCL2L13 at endoplasmic reticulum-mitochondria contact sites regulates calcium homeostasis to maintain skeletal muscle function.

iScience. 2024-7-14

[3]
A Novel Role for the Longevity-Associated Protein SLC39A11 as a Manganese Transporter.

Research (Wash D C). 2024-8-7

本文引用的文献

[1]
A Cryoinjury Model for Studying Skeletal Muscle Regeneration of the Caudal Peduncle in Adult Zebrafish.

J Vis Exp. 2023-7-7

[2]
Parallels between oncogene-driven cardiac hyperplasia and heart regeneration in zebrafish.

Development. 2023-6-15

[3]
The regeneration-responsive element monitors activation of Müller glia after MNU-induced damage of photoreceptors in the zebrafish retina.

Front Mol Neurosci. 2023-4-17

[4]
Slow myosin heavy chain 1 is required for slow myofibril and muscle fibre growth but not for myofibril initiation.

Dev Biol. 2023-7

[5]
Regeneration of the dermal skeleton and wound epidermis formation depend on BMP signaling in the caudal fin of platyfish.

Front Cell Dev Biol. 2023-2-9

[6]
Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche.

Front Cell Dev Biol. 2022-11-29

[7]
The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling.

Front Cell Dev Biol. 2022-7-22

[8]
The Many Roles of Macrophages in Skeletal Muscle Injury and Repair.

Front Cell Dev Biol. 2022-7-11

[9]
mTOR substrate phosphorylation in growth control.

Cell. 2022-5-26

[10]
Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges.

NPJ Regen Med. 2022-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索