Li Fuchen, Liu Yong, Qi JianBo, Du Yansong, Wang QingYue, Ma WenBo, Xu XianChong, Zhang ZhongQi
Qingdao University of Science and Technology, College of Information Science and Technology, Qingdao, China.
National University of Singapore, College of Design and Engineering, Singapore.
J Med Imaging (Bellingham). 2024 Jan;11(1):014008. doi: 10.1117/1.JMI.11.1.014008. Epub 2024 Feb 19.
In recent years, the continuous advancement of convolutional neural networks (CNNs) has led to the widespread integration of deep neural networks as a mainstream approach in clinical diagnostic support. Particularly, the utilization of CNN-based medical image segmentation has delivered favorable outcomes for aiding clinical diagnosis. Within this realm, network architectures based on the U-shaped structure and incorporating skip connections, along with their diverse derivatives, have gained extensive utilization across various medical image segmentation tasks. Nonetheless, two primary challenges persist. First, certain organs or tissues present considerable complexity, substantial morphological variations, and size discrepancies, posing significant challenges for achieving highly accurate segmentation. Second, the predominant focus of current deep neural networks on single-resolution feature extraction limits the effective extraction of feature information from complex medical images, thereby contributing to information loss via continuous pooling operations and contextual information interaction constraints within the U-shaped structure.
We proposed a five-layer pyramid segmentation network (PS5-Net), a multiscale segmentation network with diverse resolutions that is founded on the U-Net architecture. Initially, this network effectively leverages the distinct features of images at varying resolutions across different dimensions, departing from prior single-resolution feature extraction methods to adapt to intricate and variable segmentation scenarios. Subsequently, to comprehensively integrate feature information from diverse resolutions, a kernel selection module is proposed to assign weights to features across different dimensions, enhancing the fusion of feature information from various resolutions. Within the feature extraction network denoted as PS-UNet, we preserve the classical structure of the traditional U-Net while enhancing it through the incorporation of dilated convolutions.
PS5-Net attains a Dice score of 0.9613 for liver segmentation on the CHLISC dataset and 0.8587 on the ISIC2018 dataset for skin lesion segmentation. Comparative analysis with diverse medical image segmentation methodologies in recent years reveals that PS5-Net has achieved the highest scores and substantial advancements.
PS5-Net effectively harnesses the rich semantic information available at different resolutions, facilitating a comprehensive and nuanced understanding of the input medical images. By capitalizing on global contextual connections, the network adeptly captures the intricate interplay of features and dependencies across the entire image, resulting in more accurate and robust segmentation outcomes. The experimental validation of PS5-Net underscores its superior performance in medical image segmentation tasks, offering promising prospects for enhancing diagnostic and analytical processes within clinical settings. These results highlight the potential of PS5-Net to significantly contribute to the advancement of medical imaging technologies and ultimately improve patient care through more precise and reliable image analysis.
近年来,卷积神经网络(CNN)的不断发展使得深度神经网络作为临床诊断支持的主流方法得到广泛应用。特别是,基于CNN的医学图像分割在辅助临床诊断方面取得了良好效果。在这一领域,基于U形结构并包含跳跃连接的网络架构及其各种衍生结构,已在各种医学图像分割任务中得到广泛应用。然而,仍然存在两个主要挑战。首先,某些器官或组织具有相当的复杂性、显著的形态变化和大小差异,这对实现高精度分割构成了重大挑战。其次,当前深度神经网络主要专注于单分辨率特征提取,限制了从复杂医学图像中有效提取特征信息,从而通过U形结构内的连续池化操作和上下文信息交互约束导致信息丢失。
我们提出了一种五层金字塔分割网络(PS5-Net),这是一种基于U-Net架构的具有多种分辨率的多尺度分割网络。首先,该网络有效地利用了不同维度上不同分辨率图像的独特特征,不同于以往的单分辨率特征提取方法,以适应复杂多变的分割场景。随后,为了全面整合不同分辨率的特征信息,提出了一个内核选择模块,为不同维度的特征分配权重,增强来自各种分辨率的特征信息融合。在名为PS-UNet的特征提取网络中,我们保留了传统U-Net的经典结构,同时通过引入空洞卷积对其进行了增强。
PS5-Net在CHLISC数据集上进行肝脏分割时的Dice分数为0.9613,在ISIC2018数据集上进行皮肤病变分割时的Dice分数为0.8587。与近年来各种医学图像分割方法的对比分析表明,PS5-Net取得了最高分和显著进展。
PS5-Net有效地利用了不同分辨率下可用的丰富语义信息,有助于全面细致地理解输入的医学图像。通过利用全局上下文连接,该网络能够巧妙地捕捉整个图像中特征和依赖关系的复杂相互作用,从而产生更准确、更稳健的分割结果。PS5-Net的实验验证强调了其在医学图像分割任务中的卓越性能,为加强临床环境中的诊断和分析过程提供了广阔前景。这些结果突出了PS5-Net在显著推动医学成像技术发展以及最终通过更精确可靠的图像分析改善患者护理方面的潜力。