Suppr超能文献

用于扫描探针应用的动力学感应式力传感器的设计、制造与特性分析

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications.

作者信息

Roos August K, Scarano Ermes, Arvidsson Elisabet K, Holmgren Erik, Haviland David B

机构信息

Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-114 19 Stockholm, Sweden.

出版信息

Beilstein J Nanotechnol. 2024 Feb 15;15:242-255. doi: 10.3762/bjnano.15.23. eCollection 2024.

Abstract

We describe a transducer for low-temperature atomic force microscopy based on electromechanical coupling due to a strain-dependent kinetic inductance of a superconducting nanowire. The force sensor is a bending triangular plate (cantilever) whose deflection is measured via a shift in the resonant frequency of a high- superconducting microwave resonator at 4.5 GHz. We present design simulations including mechanical finite-element modeling of surface strain and electromagnetic simulations of meandering nanowires with large kinetic inductance. We discuss a lumped-element model of the force sensor and describe the role of an additional shunt inductance for tuning the coupling to the transmission line used to measure the microwave resonance. A detailed description of our fabrication is presented, including information about the process parameters used for each layer. We also discuss the fabrication of sharp tips on the cantilever using focused electron beam-induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor's operation as an electromechanical transducer of force.

摘要

我们描述了一种用于低温原子力显微镜的换能器,其基于超导纳米线应变相关的动态电感所产生的机电耦合。力传感器是一个弯曲的三角形板(悬臂梁),其偏转通过4.5 GHz的高温超导微波谐振器谐振频率的偏移来测量。我们展示了设计模拟,包括表面应变的机械有限元建模以及具有大动态电感的曲折纳米线的电磁模拟。我们讨论了力传感器的集总元件模型,并描述了用于调整与用于测量微波谐振的传输线耦合的附加并联电感的作用。给出了我们制造过程的详细描述,包括每层所用工艺参数的信息。我们还讨论了使用聚焦电子束诱导铂沉积在悬臂梁上制造尖锐尖端的过程。最后,我们展示了表征机械谐振频率分布、微波谐振的温度依赖性以及该传感器作为力机电换能器的操作的测量结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109b/10877079/61f466a1ae18/Beilstein_J_Nanotechnol-15-242-g002.jpg

相似文献

1
Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications.
Beilstein J Nanotechnol. 2024 Feb 15;15:242-255. doi: 10.3762/bjnano.15.23. eCollection 2024.
2
A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line.
Appl Phys Lett. 2016 May 30;108(22). doi: 10.1063/1.4953209. Epub 2016 Jun 3.
3
Tunable superconducting nanoinductors.
Nanotechnology. 2010 Nov 5;21(44):445202. doi: 10.1088/0957-4484/21/44/445202. Epub 2010 Oct 5.
4
Utilizing Gate-Controlled Supercurrent for All-Metallic Tunable Superconducting Microwave Resonators.
Nano Lett. 2024 Jan 31;24(4):1223-1230. doi: 10.1021/acs.nanolett.3c04080. Epub 2024 Jan 17.
5
Fabrication and Characterization of Superconducting Resonators.
J Vis Exp. 2016 May 21(111):53868. doi: 10.3791/53868.
7
Atomic force microscope characterization of a resonating nanocantilever.
Ultramicroscopy. 2003 Oct-Nov;97(1-4):127-33. doi: 10.1016/S0304-3991(03)00037-8.
8
Piezoresistive sensors for scanning probe microscopy.
Ultramicroscopy. 2000 Feb;82(1-4):39-48. doi: 10.1016/s0304-3991(99)00171-0.
9
Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level.
Anal Chem. 2007 Jul 1;79(13):4769-77. doi: 10.1021/ac070598u. Epub 2007 May 24.
10
Lead-Free LiNbO Thick Film MEMS Kinetic Cantilever Beam Sensor/Energy Harvester.
Sensors (Basel). 2022 Jan 12;22(2):559. doi: 10.3390/s22020559.

本文引用的文献

1
Very-high-frequency probes for atomic force microscopy with silicon optomechanics.
Microsyst Nanoeng. 2022 Mar 18;8:32. doi: 10.1038/s41378-022-00364-4. eCollection 2022.
2
Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures.
Nat Commun. 2021 Jul 5;12(1):4124. doi: 10.1038/s41467-021-24318-y.
4
Nanowire Superinductance Fluxonium Qubit.
Phys Rev Lett. 2019 Jan 11;122(1):010504. doi: 10.1103/PhysRevLett.122.010504.
5
The qPlus sensor, a powerful core for the atomic force microscope.
Rev Sci Instrum. 2019 Jan;90(1):011101. doi: 10.1063/1.5052264.
6
Circuit quantum electrodynamics of granular aluminum resonators.
Nat Commun. 2018 Sep 24;9(1):3889. doi: 10.1038/s41467-018-06386-9.
7
A tunable coupler for superconducting microwave resonators using a nonlinear kinetic inductance transmission line.
Appl Phys Lett. 2016 May 30;108(22). doi: 10.1063/1.4953209. Epub 2016 Jun 3.
8
Force sensitivity of multilayer graphene optomechanical devices.
Nat Commun. 2016 Aug 9;7:12496. doi: 10.1038/ncomms12496.
9
Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys Rev Lett. 2016 Feb 12;116(6):061102. doi: 10.1103/PhysRevLett.116.061102. Epub 2016 Feb 11.
10
Efficient and robust analysis of complex scattering data under noise in microwave resonators.
Rev Sci Instrum. 2015 Feb;86(2):024706. doi: 10.1063/1.4907935.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验