Schwab L, Allain P E, Mauran N, Dollat X, Mazenq L, Lagrange D, Gély M, Hentz S, Jourdan G, Favero I, Legrand B
Laboratoire d'Analyse et d'Architecture des Systèmes, Université de Toulouse, CNRS UPR 8001, 31031 Toulouse, France.
Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS UMR 7162, 75013 Paris, France.
Microsyst Nanoeng. 2022 Mar 18;8:32. doi: 10.1038/s41378-022-00364-4. eCollection 2022.
Atomic force microscopy (AFM) has been consistently supporting nanosciences and nanotechnologies for over 30 years and is used in many fields from condensed matter physics to biology. It enables the measurement of very weak forces at the nanoscale, thus elucidating the interactions at play in fundamental processes. Here, we leverage the combined benefits of micro/nanoelectromechanical systems and cavity optomechanics to fabricate a sensor for dynamic mode AFM at a frequency above 100 MHz. This frequency is two decades above the fastest commercial AFM probes, suggesting an opportunity for measuring forces at timescales unexplored thus far. The fabrication is achieved using very-large-scale integration technologies derived from photonic silicon circuits. The probe's optomechanical ring cavity is coupled to a 1.55 μm laser light and features a 130 MHz mechanical resonance mode with a quality factor of 900 in air. A limit of detection in the displacement of 3 × 10 m/√Hz is obtained, enabling the detection of the Brownian motion of the probe and paving the way for force sensing experiments in the dynamic mode with a working vibration amplitude in the picometer range. When inserted in a custom AFM instrument embodiment, this optomechanical sensor demonstrates the capacity to perform force-distance measurements and to maintain a constant interaction strength between the tip and sample, an essential requirement for AFM applications. Experiments indeed show a stable closed-loop operation with a setpoint of 4 nN/nm for an unprecedented subpicometer vibration amplitude, where the tip-sample interaction is mediated by a stretched water meniscus.
原子力显微镜(AFM)在过去30多年里一直为纳米科学和纳米技术提供支持,被应用于从凝聚态物理到生物学的众多领域。它能够在纳米尺度上测量非常微弱的力,从而阐明基本过程中起作用的相互作用。在此,我们利用微纳机电系统和腔光力学的综合优势,制造了一种频率高于100 MHz的动态模式AFM传感器。这个频率比最快的商用AFM探针高出两个数量级,这表明有机会在迄今为止尚未探索的时间尺度上测量力。制造过程采用源自光子硅电路的超大规模集成技术。该探针的光机械环形腔与1.55μm激光耦合,在空气中具有130 MHz的机械共振模式,品质因数为900。实现了3×10 m/√Hz的位移检测限,能够检测探针的布朗运动,并为在皮米范围内工作振动幅度的动态模式下的力传感实验铺平了道路。当插入定制的AFM仪器实施方案中时,这种光机械传感器展示了执行力-距离测量以及在针尖和样品之间保持恒定相互作用强度的能力,这是AFM应用的一项基本要求。实验确实表明,对于前所未有的亚皮米振动幅度,在4 nN/nm设定点下实现了稳定的闭环操作,其中针尖-样品相互作用由拉伸的水弯月面介导。