Suppr超能文献

整合单细胞和批量表达数据以识别和分析癌症预后相关基因。

Integrating single-cell and bulk expression data to identify and analyze cancer prognosis-related genes.

作者信息

Bao Shengbao, Fan Yaxin, Mei Yichao, Gao Junxiang

机构信息

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.

出版信息

Heliyon. 2024 Feb 10;10(4):e25640. doi: 10.1016/j.heliyon.2024.e25640. eCollection 2024 Feb 29.

Abstract

Compared with traditional evaluation methods of cancer prognosis based on tissue samples, single-cell sequencing technology can provide information on cell type heterogeneity for predicting biomarkers related to cancer prognosis. Therefore, the bulk and single-cell expression profiles of breast cancer and normal cells were comprehensively analyzed to identify malignant and non-malignant markers and construct a reliable prognosis model. We first screened highly reliable differentially expressed genes from bulk expression profiles of multiple breast cancer tissues and normal tissues, and inferred genes related to cell malignancy from single-cell data. Then we identified eight critical genes related to breast cancer to conduct Cox regression analysis, calculate polygenic risk score (PRS), and verify the predictive ability of PRS in two data groups. The results show that PRS can divide breast cancer patients into high-risk group and low-risk group. PRS is related to the overall survival time and relapse-free interval and is a prognosis factor independent of conventional clinicopathological characteristics. Breast cancer is usually regarded as a cancer with a relatively good prognosis. In order to further explore whether this workflow can be applied to cancer with poor prognosis, we selected lung cancer for a comparative study. The results show that this workflow can also build a reasonable prognosis model for lung cancer. This study provides new insight and practical source code for further research on cancer biomarkers and drug targets. It also provides basis for survival prediction, treatment response prediction, and personalized treatment.

摘要

与基于组织样本的传统癌症预后评估方法相比,单细胞测序技术能够提供细胞类型异质性信息,用于预测与癌症预后相关的生物标志物。因此,我们全面分析了乳腺癌和正常细胞的整体及单细胞表达谱,以鉴定恶性和非恶性标志物,并构建可靠的预后模型。我们首先从多个乳腺癌组织和正常组织的整体表达谱中筛选出高度可靠的差异表达基因,并从单细胞数据中推断与细胞恶性相关的基因。然后,我们鉴定出八个与乳腺癌相关的关键基因,进行Cox回归分析,计算多基因风险评分(PRS),并在两个数据组中验证PRS的预测能力。结果表明,PRS可将乳腺癌患者分为高风险组和低风险组。PRS与总生存时间和无复发生存期相关,是一个独立于传统临床病理特征的预后因素。乳腺癌通常被认为是一种预后相对较好的癌症。为了进一步探究该工作流程是否可应用于预后较差的癌症,我们选择肺癌进行了对比研究。结果表明,该工作流程也可为肺癌构建合理的预后模型。本研究为癌症生物标志物和药物靶点的进一步研究提供了新的见解和实用的源代码。它还为生存预测、治疗反应预测和个性化治疗提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e95/10877256/f2668c9e5cb7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验