Suppr超能文献

基于图卷积网络深度学习的幼儿大运动表现综合评估与早期预测:开发与验证研究

Comprehensive Assessment and Early Prediction of Gross Motor Performance in Toddlers With Graph Convolutional Networks-Based Deep Learning: Development and Validation Study.

作者信息

Chun Sulim, Jang Sooyoung, Kim Jin Yong, Ko Chanyoung, Lee JooHyun, Hong JaeSeong, Park Yu Rang

机构信息

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

JMIR Form Res. 2024 Feb 21;8:e51996. doi: 10.2196/51996.

Abstract

BACKGROUND

Accurate and timely assessment of children's developmental status is crucial for early diagnosis and intervention. More accurate and automated developmental assessments are essential due to the lack of trained health care providers and imprecise parental reporting. In various areas of development, gross motor development in toddlers is known to be predictive of subsequent childhood developments.

OBJECTIVE

The purpose of this study was to develop a model to assess gross motor behavior and integrate the results to determine the overall gross motor status of toddlers. This study also aimed to identify behaviors that are important in the assessment of overall gross motor skills and detect critical moments and important body parts for the assessment of each behavior.

METHODS

We used behavioral videos of toddlers aged 18-35 months. To assess gross motor development, we selected 4 behaviors (climb up the stairs, go down the stairs, throw the ball, and stand on 1 foot) that have been validated with the Korean Developmental Screening Test for Infants and Children. In the child behavior videos, we estimated each child's position as a bounding box and extracted human keypoints within the box. In the first stage, the videos with the extracted human keypoints of each behavior were evaluated separately using a graph convolutional networks (GCN)-based algorithm. The probability values obtained for each label in the first-stage model were used as input for the second-stage model, the extreme gradient boosting (XGBoost) algorithm, to predict the overall gross motor status. For interpretability, we used gradient-weighted class activation mapping (Grad-CAM) to identify important moments and relevant body parts during the movements. The Shapley additive explanations method was used for the assessment of variable importance, to determine the movements that contributed the most to the overall developmental assessment.

RESULTS

Behavioral videos of 4 gross motor skills were collected from 147 children, resulting in a total of 2395 videos. The stage-1 GCN model to evaluate each behavior had an area under the receiver operating characteristic curve (AUROC) of 0.79 to 0.90. Keypoint-mapping Grad-CAM visualization identified important moments in each behavior and differences in important body parts. The stage-2 XGBoost model to assess the overall gross motor status had an AUROC of 0.90. Among the 4 behaviors, "go down the stairs" contributed the most to the overall developmental assessment.

CONCLUSIONS

Using movement videos of toddlers aged 18-35 months, we developed objective and automated models to evaluate each behavior and assess each child's overall gross motor performance. We identified the important behaviors for assessing gross motor performance and developed methods to recognize important moments and body parts while evaluating gross motor performance.

摘要

背景

准确及时地评估儿童的发育状况对于早期诊断和干预至关重要。由于缺乏训练有素的医疗保健人员以及家长报告不准确,更准确和自动化的发育评估至关重要。在各个发育领域,幼儿的大运动发育已知可预测后续的儿童发育情况。

目的

本研究的目的是开发一个模型来评估大运动行为,并整合结果以确定幼儿的整体大运动状况。本研究还旨在识别在评估整体大运动技能中重要的行为,并检测评估每种行为的关键时刻和重要身体部位。

方法

我们使用了18至35个月大幼儿的行为视频。为了评估大运动发育,我们选择了4种行为(爬楼梯、下楼梯、扔球和单脚站立),这些行为已通过韩国婴幼儿发育筛查测试得到验证。在儿童行为视频中,我们将每个孩子的位置估计为一个边界框,并提取框内的人体关键点。在第一阶段,使用基于图卷积网络(GCN)的算法分别评估具有每种行为提取的人体关键点的视频。第一阶段模型中为每个标签获得的概率值用作第二阶段模型(极端梯度提升(XGBoost)算法)的输入,以预测整体大运动状况。为了便于解释,我们使用梯度加权类激活映射(Grad-CAM)来识别运动过程中的重要时刻和相关身体部位。使用Shapley加法解释方法评估变量重要性,以确定对整体发育评估贡献最大的运动。

结果

从147名儿童中收集了4种大运动技能的行为视频,总共2395个视频。评估每种行为的第一阶段GCN模型在接收器操作特征曲线(AUROC)下的面积为0.79至0.90。关键点映射Grad-CAM可视化识别了每种行为中的重要时刻以及重要身体部位的差异。评估整体大运动状况的第二阶段XGBoost模型的AUROC为0.90。在这4种行为中,“下楼梯”对整体发育评估的贡献最大。

结论

利用18至35个月大幼儿的运动视频,我们开发了客观且自动化的模型来评估每种行为并评估每个孩子的整体大运动表现。我们确定了评估大运动表现的重要行为,并开发了在评估大运动表现时识别重要时刻和身体部位的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b61e/10918544/bd46adc6596f/formative_v8i1e51996_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验