Shattuck Labs Inc., Austin, Texas.
Moderna, Inc., Cambridge, Massachusetts.
Cancer Res. 2024 May 15;84(10):1550-1559. doi: 10.1158/0008-5472.CAN-23-2875.
Lipid nanoparticle (LNP)-encapsulated mRNA has been used for in vivo production of several secreted protein classes, such as IgG, and has enabled the development of personalized vaccines in oncology. Establishing the feasibility of delivering complex multispecific modalities that require higher-order structures important for their function could help expand the use of mRNA/LNP biologic formulations. Here, we evaluated whether in vivo administration of mRNA/LNP formulations of SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT could achieve oligomerization and extend exposure, on-target activity, and antitumor responses comparable with that of the corresponding recombinant fusion proteins. Intravenous infusion of the formulated LNP-encapsulated mRNAs led to rapid and sustained production of functional hexameric proteins in vivo, which increased the overall exposure relative to the recombinant protein controls by ∼28 to 140 fold over 96 hours. High concentrations of the mRNA-encoded proteins were also observed in secondary lymphoid organs and within implanted tumors, with protein concentrations in tumors up to 134-fold greater than with the recombinant protein controls 24 hours after treatment. In addition, SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT mRNAs induced a greater increase in antigen-specific CD8+ T cells in the tumors. These mRNA/LNP formulations were well tolerated and led to a rapid increase in serum and intratumoral IL2, delayed tumor growth, extended survival, and outperformed the activities of benchmark mAb controls. Furthermore, the mRNA/LNPs demonstrated improved efficacy in combination with anti-PD-L1 relative to the recombinant fusion proteins. These data support the delivery of complex oligomeric biologics as mRNA/LNP formulations, where high therapeutic expression and exposure could translate into improved patient outcomes.
Lipid nanoparticle-encapsulated mRNA can efficiently encode complex fusion proteins encompassing immune checkpoint blockers and costimulators that functionally oligomerize in vivo with extended pharmacokinetics and durable exposure to induce potent antitumor immunity.
脂质纳米颗粒(LNP)包裹的 mRNA 已被用于多种分泌蛋白类别的体内生产,如 IgG,并使肿瘤学中的个性化疫苗得以开发。建立递送复杂多特异性药物的可行性,这些药物需要对其功能很重要的高级结构,这可能有助于扩大 mRNA/LNP 生物制剂的使用。在这里,我们评估了 SIRPα-Fc-CD40L 和 TIGIT-Fc-LIGHT 的 mRNA/LNP 制剂是否可以在体内实现寡聚化,并延长暴露时间、靶标活性和抗肿瘤反应,与相应的重组融合蛋白相当。静脉内输注配方 LNP 包裹的 mRNA 导致功能性六聚体蛋白在体内的快速和持续产生,与重组蛋白对照相比,在 96 小时内将总暴露量增加了约 28 至 140 倍。在二级淋巴器官和植入的肿瘤内也观察到高浓度的 mRNA 编码蛋白,其中肿瘤内的蛋白浓度比用重组蛋白对照治疗后 24 小时高 134 倍。此外,SIRPα-Fc-CD40L 和 TIGIT-Fc-LIGHT mRNA 诱导肿瘤中抗原特异性 CD8+T 细胞的增加更大。这些 mRNA/LNP 制剂耐受性良好,并导致血清和肿瘤内 IL2 的快速增加,延迟肿瘤生长,延长存活时间,并优于基准 mAb 对照的活性。此外,与重组融合蛋白相比,mRNA/LNPs 联合抗 PD-L1 显示出更好的疗效。这些数据支持将复杂的寡聚生物制剂作为 mRNA/LNP 制剂进行递送,其中高治疗表达和暴露可能转化为改善患者的结果。
包裹在脂质纳米颗粒中的 mRNA 可以有效地编码复杂的融合蛋白,这些融合蛋白包含免疫检查点阻滞剂和共刺激物,在体内功能性寡聚化,具有延长的药代动力学和持久的暴露,从而诱导有效的抗肿瘤免疫。