Suppr超能文献

黏连蛋白的调控及其在染色体结构和功能中的作用。

Cohesin regulation and roles in chromosome structure and function.

机构信息

Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Curr Opin Genet Dev. 2024 Apr;85:102159. doi: 10.1016/j.gde.2024.102159. Epub 2024 Feb 20.

Abstract

Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.

摘要

染色体结构调控 DNA 模板的过程,如基因转录。在发育和疾病环境中,染色体结构会发生动态变化。黏合蛋白复合物是一种分子马达,通过生成 DNA 环来调节染色体结构,使两个远端基因组位点在空间上接近。关于 DNA 环的形成和溶解,以及 DNA 环在调节间期基因组转录中的作用,仍存在许多悬而未决的问题。这篇综述重点介绍了最近的发现,这些发现为黏合蛋白和染色体结构在发育和疾病过程中基因转录中的作用提供了分子见解。

相似文献

1
Cohesin regulation and roles in chromosome structure and function.
Curr Opin Genet Dev. 2024 Apr;85:102159. doi: 10.1016/j.gde.2024.102159. Epub 2024 Feb 20.
2
Condensins and cohesins - one of these things is not like the other!
J Cell Sci. 2019 Feb 7;132(3):jcs220491. doi: 10.1242/jcs.220491.
3
An extrinsic motor directs chromatin loop formation by cohesin.
EMBO J. 2024 Oct;43(19):4173-4196. doi: 10.1038/s44318-024-00202-5. Epub 2024 Aug 19.
4
Genome folding by cohesin.
Curr Opin Genet Dev. 2025 Apr;91:102310. doi: 10.1016/j.gde.2025.102310. Epub 2025 Jan 18.
5
Attraction and disruption: how loop extrusion and compartmentalisation shape the nuclear genome.
Curr Opin Genet Dev. 2024 Jun;86:102194. doi: 10.1016/j.gde.2024.102194. Epub 2024 Apr 17.
6
Extensive mutual influences of SMC complexes shape 3D genome folding.
Nature. 2025 Apr;640(8058):543-553. doi: 10.1038/s41586-025-08638-3. Epub 2025 Feb 26.
7
Cohesin residency determines chromatin loop patterns.
Elife. 2020 Nov 10;9:e59889. doi: 10.7554/eLife.59889.
8
A unified model for cohesin function in sisterchromatid cohesion and chromatin loop formation.
Mol Cell. 2025 Mar 20;85(6):1058-1071. doi: 10.1016/j.molcel.2025.02.005.
9
Crosstalk between chromatin structure, cohesin activity and transcription.
Epigenetics Chromatin. 2019 Jul 22;12(1):47. doi: 10.1186/s13072-019-0293-6.
10
Permeable TAD boundaries and their impact on genome-associated functions.
Bioessays. 2024 Oct;46(10):e2400137. doi: 10.1002/bies.202400137. Epub 2024 Aug 2.

引用本文的文献

1
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
Genome Res. 2025 May 2;35(5):1108-1123. doi: 10.1101/gr.279365.124.
2
Genetic coupling of enhancer activity and connectivity in gene expression control.
Nat Commun. 2025 Jan 27;16(1):970. doi: 10.1038/s41467-025-55900-3.
3
ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2417346122. doi: 10.1073/pnas.2417346122. Epub 2025 Jan 23.
5
Editorial overview: Breaking boundaries: new frontiers in chromatin regulation for cancer therapy.
Curr Opin Genet Dev. 2024 Oct;88:102255. doi: 10.1016/j.gde.2024.102255. Epub 2024 Sep 3.
6
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
bioRxiv. 2024 Sep 25:2023.09.18.558239. doi: 10.1101/2023.09.18.558239.

本文引用的文献

1
Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms.
Mol Cell. 2023 Sep 7;83(17):3049-3063.e6. doi: 10.1016/j.molcel.2023.07.024. Epub 2023 Aug 16.
2
G-quadruplexes associated with R-loops promote CTCF binding.
Mol Cell. 2023 Sep 7;83(17):3064-3079.e5. doi: 10.1016/j.molcel.2023.07.009. Epub 2023 Aug 7.
3
CTCF and R-loops are boundaries of cohesin-mediated DNA looping.
Mol Cell. 2023 Aug 17;83(16):2856-2871.e8. doi: 10.1016/j.molcel.2023.07.006. Epub 2023 Aug 2.
4
The Mediator complex regulates enhancer-promoter interactions.
Nat Struct Mol Biol. 2023 Jul;30(7):991-1000. doi: 10.1038/s41594-023-01027-2. Epub 2023 Jul 10.
5
CTCF and Its Multi-Partner Network for Chromatin Regulation.
Cells. 2023 May 10;12(10):1357. doi: 10.3390/cells12101357.
6
Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments.
Nat Genet. 2023 Jun;55(6):1048-1056. doi: 10.1038/s41588-023-01391-1. Epub 2023 May 8.
7
CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.
Nature. 2023 Apr;616(7958):822-827. doi: 10.1038/s41586-023-05961-5. Epub 2023 Apr 19.
8
Cohesin regulates alternative splicing.
Sci Adv. 2023 Mar;9(9):eade3876. doi: 10.1126/sciadv.ade3876. Epub 2023 Mar 1.
9
Auxin-inducible degron 2 system deciphers functions of CTCF domains in transcriptional regulation.
Genome Biol. 2023 Jan 26;24(1):14. doi: 10.1186/s13059-022-02843-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验