Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
Genome Biol. 2023 Jan 26;24(1):14. doi: 10.1186/s13059-022-02843-3.
CTCF is a well-established chromatin architectural protein that also plays various roles in transcriptional regulation. While CTCF biology has been extensively studied, how the domains of CTCF function to regulate transcription remains unknown. Additionally, the original auxin-inducible degron 1 (AID1) system has limitations in investigating the function of CTCF.
We employ an improved auxin-inducible degron technology, AID2, to facilitate the study of acute depletion of CTCF while overcoming the limitations of the previous AID system. As previously observed through the AID1 system and steady-state RNA analysis, the new AID2 system combined with SLAM-seq confirms that CTCF depletion leads to modest nascent and steady-state transcript changes. A CTCF domain sgRNA library screening identifies the zinc finger (ZF) domain as the region within CTCF with the most functional relevance, including ZFs 1 and 10. Removal of ZFs 1 and 10 reveals genomic regions that independently require these ZFs for DNA binding and transcriptional regulation. Notably, loci regulated by either ZF1 or ZF10 exhibit unique CTCF binding motifs specific to each ZF.
By extensively comparing the AID1 and AID2 systems for CTCF degradation in SEM cells, we confirm that AID2 degradation is superior for achieving miniAID-tagged protein degradation without the limitations of the AID1 system. The model we create that combines AID2 depletion of CTCF with exogenous overexpression of CTCF mutants allows us to demonstrate how peripheral ZFs intricately orchestrate transcriptional regulation in a cellular context for the first time.
CTCF 是一种成熟的染色质结构蛋白,在转录调控中也发挥着各种作用。尽管 CTCF 的生物学功能已经得到了广泛的研究,但 CTCF 的结构域如何发挥作用来调节转录仍然未知。此外,原始的生长素诱导降解 1(AID1)系统在研究 CTCF 功能方面存在局限性。
我们采用了一种改进的生长素诱导降解结构域技术 AID2,以促进 CTCF 的急性耗竭研究,同时克服了之前 AID 系统的局限性。正如之前通过 AID1 系统和稳态 RNA 分析观察到的那样,新的 AID2 系统与 SLAM-seq 结合证实,CTCF 耗竭会导致新生和稳态转录物的适度变化。CTCF 结构域 sgRNA 文库筛选确定锌指(ZF)结构域是 CTCF 中具有最相关功能的区域,包括 ZF1 和 ZF10。ZF1 和 ZF10 的缺失揭示了独立需要这些 ZF 来进行 DNA 结合和转录调控的基因组区域。值得注意的是,由 ZF1 或 ZF10 调节的基因座表现出与每个 ZF 特异性相关的独特 CTCF 结合基序。
通过在 SEM 细胞中广泛比较 AID1 和 AID2 系统对 CTCF 降解的作用,我们证实 AID2 降解在实现 miniAID 标记蛋白降解方面优于 AID1 系统,而不会受到 AID1 系统的限制。我们创建的模型结合了 AID2 对 CTCF 的耗竭和外源性过表达 CTCF 突变体,使我们首次能够展示外围 ZF 如何在细胞环境中精细地协调转录调控。