Suppr超能文献

基于图像的植物表型深度学习。

Deep Learning in Image-Based Plant Phenotyping.

机构信息

Donald Danforth Plant Science Center, St. Louis, Missouri, USA; email:

出版信息

Annu Rev Plant Biol. 2024 Jul;75(1):771-795. doi: 10.1146/annurev-arplant-070523-042828. Epub 2024 Jul 2.

Abstract

A major bottleneck in the crop improvement pipeline is our ability to phenotype crops quickly and efficiently. Image-based, high-throughput phenotyping has a number of advantages because it is nondestructive and reduces human labor, but a new challenge arises in extracting meaningful information from large quantities of image data. Deep learning, a type of artificial intelligence, is an approach used to analyze image data and make predictions on unseen images that ultimately reduces the need for human input in computation. Here, we review the basics of deep learning, assessments of deep learning success, examples of applications of deep learning in plant phenomics, best practices, and open challenges.

摘要

作物改良管道中的一个主要瓶颈是我们快速有效地对作物进行表型分析的能力。基于图像的高通量表型分析具有许多优势,因为它是非破坏性的,减少了人工劳动,但从大量图像数据中提取有意义的信息会带来新的挑战。深度学习是一种人工智能,用于分析图像数据并对未见图像进行预测,从而减少计算过程中对人工输入的需求。在这里,我们回顾了深度学习的基础知识、深度学习成功的评估、深度学习在植物表型组学中的应用实例、最佳实践和开放挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验