Suppr超能文献

基于深度学习的高通量表型分析可以推动植物生殖生物学的未来发现。

Deep learning-based high-throughput phenotyping can drive future discoveries in plant reproductive biology.

机构信息

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.

School of Plant Sciences, University of Arizona, Tucson, AZ, USA.

出版信息

Plant Reprod. 2021 Jun;34(2):81-89. doi: 10.1007/s00497-021-00407-2. Epub 2021 Mar 16.

Abstract

Advances in deep learning are providing a powerful set of image analysis tools that are readily accessible for high-throughput phenotyping applications in plant reproductive biology. High-throughput phenotyping systems are becoming critical for answering biological questions on a large scale. These systems have historically relied on traditional computer vision techniques. However, neural networks and specifically deep learning are rapidly becoming more powerful and easier to implement. Here, we examine how deep learning can drive phenotyping systems and be used to answer fundamental questions in reproductive biology. We describe previous applications of deep learning in the plant sciences, provide general recommendations for applying these methods to the study of plant reproduction, and present a case study in maize ear phenotyping. Finally, we highlight several examples where deep learning has enabled research that was previously out of reach and discuss the future outlook of these methods.

摘要

深度学习的进展为高通量表型分析应用提供了一套强大的图像分析工具,这些工具在植物生殖生物学中易于使用。高通量表型分析系统对于大规模回答生物学问题变得至关重要。这些系统历史上依赖于传统的计算机视觉技术。然而,神经网络,特别是深度学习,正变得越来越强大,并且更容易实现。在这里,我们研究了深度学习如何驱动表型分析系统,并用于回答生殖生物学中的基本问题。我们描述了深度学习在植物科学中的先前应用,提供了将这些方法应用于植物生殖研究的一般建议,并提供了一个在玉米穗表型分析中的案例研究。最后,我们强调了深度学习在几个使以前难以企及的研究成为可能的例子,并讨论了这些方法的未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8126/8128740/c0bdda7e2168/497_2021_407_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验