Bezerra Leticia S, Belhout Samir A, Wang Shiqi, Quiroz Jhon, de Oliveira Paulo F M, Shetty Shwetha, Rocha Guilherme, Santos Hugo L S, Frindy Sana, Oropeza Freddy E, de la Peña O'Shea Víctor A, Kallio Antti-Jussi, Huotari Simo, Huo Wenyi, Camargo Pedro H C
Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland.
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo. Av. Lineu Prestes 748, São Paulo 05508000, Brazil.
ACS Appl Mater Interfaces. 2024 Mar 6;16(9):11467-11478. doi: 10.1021/acsami.3c17101. Epub 2024 Feb 21.
Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HMoO) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HMoO and optimizing photocatalytic activities in the visible range. We investigated the effect of HMoO band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HMoO localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.
等离子体光催化一直受到等离子体材料(如银和金)高成本和可扩展性的限制。通过关注储量丰富的光催化剂/等离子体材料(HMoO)和作为催化剂的钯,我们通过开发钯/HMoO的无溶剂机械化学合成方法并优化可见光范围内的光催化活性,解决了这些挑战。我们研究了HMoO带隙激发(427纳米处)、钯带间跃迁(427纳米处)以及HMoO局域表面等离子体共振(LSPR)激发(640纳米处)对作为模型反应的析氢和苯乙炔氢化光催化活性的影响。尽管两种激发波长都导致了相当的光增强,但在双激发条件(427 + 640纳米)下实现了110%的增长。这归因于光激发的协同效应,该效应优化了催化位点处高能电子的产生。这些结果对于基于储量丰富成分的可见光光催化剂的开发具有重要意义。