Suppr超能文献

综合转录组学和代谢组学分析阐明了黄酮类生物合成在调控盐胁迫下桑椹种子萌发中的作用机制。

Integrated transcriptomic and metabolomic analyses elucidate the mechanism of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress.

机构信息

College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.

Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China.

出版信息

BMC Plant Biol. 2024 Feb 21;24(1):132. doi: 10.1186/s12870-024-04804-3.

Abstract

Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.

摘要

种子繁殖是中国桑树扩张的主要方法,是一种重要的经济林树种。然而,种子萌发是对各种非生物胁迫最敏感的阶段,尤其是盐胁迫。为了揭示桑树种子在盐胁迫下萌发的分子调控机制,对在 50 和 100mmol/L NaCl 胁迫下萌发的桑树种子进行了类黄酮代谢组学和转录组学分析。类黄酮代谢组分析显示,共鉴定出 145 种差异类黄酮代谢物(DFMs),分为 9 组,包括 40 种黄酮醇、32 种黄酮、16 种查尔酮和 14 种黄烷酮。其中,89 种(61.4%)DFMs 随着盐浓度的增加而连续积累,在 100mmol/L 盐浓度下达到最高水平;这些 DFMs 包括槲皮素-3-O-葡萄糖苷(异槲皮苷)、山奈酚(3,5,7,4'-四羟基黄酮)、槲皮素-7-O-葡萄糖苷、杨梅素(二氢槲皮素)和芹菜素(4',5,7-三羟基黄酮),表明这些类黄酮可能是参与盐胁迫响应的关键代谢物。转录分析共鉴定出 3055 个差异表达基因(DEGs),其中大多数富集在类黄酮生物合成(ko00941)、苯丙氨酸生物合成(ko00940)和次生代谢物生物合成(ko01110)。类黄酮代谢组和转录组数据的综合分析表明,苯丙氨酸解氨酶(PAL)、4-香豆酸辅酶 A 连接酶(4CL)、查尔酮合酶(CHS)、黄酮醇合酶(FLS)、双功能二氢黄酮醇 4-还原酶/黄烷酮 4-还原酶(DFR)和花青素还原酶(ANR)是参与 50 和 100mmol/L NaCl 胁迫下桑树种子萌发过程中类黄酮积累的关键基因。此外,三个转录因子,MYB、bHLH 和 NAC,参与了盐胁迫下类黄酮的积累调节。定量实时 PCR(qRT-PCR)验证结果表明,11 个 DEGs 的表达水平,包括 7 个参与类黄酮生物合成的基因,在不同盐浓度下与转录组数据一致,并行反应监测(PRM)结果表明,6 种关键酶(蛋白)的表达水平参与类黄酮合成与类黄酮的积累一致。本研究为研究不同浓度盐胁迫下类黄酮生物合成对桑树种子萌发的调控作用提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d70a/10880279/98d5b44aa8b3/12870_2024_4804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验