Waldner Samuel, Wendelspiess Erwin, Detampel Pascal, Schlepütz Christian M, Huwyler Jörg, Puchkov Maxim
Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelberstrasse 50, 4056, Basel, Switzerland.
Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland.
Heliyon. 2024 Feb 12;10(4):e26025. doi: 10.1016/j.heliyon.2024.e26025. eCollection 2024 Feb 29.
The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (μCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own μCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.
目前,人们对药物片剂崩解机制的理解还远未全面。尽管控制制剂的崩解过程对于最大化活性药物成分的生物利用度以及确保可预测和一致的释放曲线至关重要,但目前对该过程的理解是基于间接或表面的测量。因此,制剂科学可以基于对该过程的直接观察,进一步加深对控制崩解的基本物理原理的理解。我们旨在通过生成一系列时间分辨的X射线微计算机断层扫描(μCT)图像来帮助弥合这一差距,这些图像捕捉了各种正在崩解的微型片剂制剂的体积图像。自动图像分割是克服在高放大倍数下分析多个异质断层图像时间序列所面临挑战的先决条件。我们基于U-Net架构设计并训练了一个卷积神经网络(CNN),用于自主、快速且一致的图像分割。我们创建了自己的μCT数据重建管道并对其进行参数化,以提供对基于CNN的分割而言最优的图像质量。我们的方法使我们能够在崩解过程中可视化片剂的内部微观结构,并从时间分辨数据中提取崩解动力学参数。我们通过因子分析从定性和定量实验响应方面确定不同制剂成分对崩解过程的影响。我们将我们的发现与已知的制剂成分特性和既定的实验结果联系起来。我们基于深度学习图像处理的直接成像方法为药物片剂的崩解机制提供了新的见解。