Suppr超能文献

深度学习卷积神经网络在内部片剂缺陷检测中的应用:高准确率、高吞吐量和高适应性。

Application of Deep Learning Convolutional Neural Networks for Internal Tablet Defect Detection: High Accuracy, Throughput, and Adaptability.

机构信息

Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas 78712.

ExecuPharm, 610 Freedom Business Center Drive, Suite 200, King of Prussia, Pennsylvania 19406.

出版信息

J Pharm Sci. 2020 Apr;109(4):1547-1557. doi: 10.1016/j.xphs.2020.01.014. Epub 2020 Jan 23.

Abstract

Tablet defects encountered during the manufacturing of oral formulations can result in quality concerns, timeline delays, and elevated financial costs. Internal tablet cracking is not typically measured in routine inspections but can lead to batch failures such as tablet fracturing. X-ray computed tomography (XRCT) has become well-established to analyze internal cracks of oral tablets. However, XRCT normally generates very large quantities of image data (thousands of 2D slices per data set) which require a trained professional to analyze. A user-guided manual analysis is laborious, time-consuming, and subjective, which may result in a poor statistical representation and inconsistent results. In this study, we have developed an analysis program that incorporates deep learning convolutional neural networks to fully automate the XRCT image analysis of oral tablets for internal crack detection. The computer program achieves robust quantification of internal tablet cracks with an average accuracy of 94%. In addition, the deep learning tool is fully automated and achieves a throughput capable of analyzing hundreds of tablets. We have also explored the adaptability of the deep learning analysis program toward different products (e.g., different types of bottles and tablets). Finally, the deep learning tool is effectively implemented into the industrial pharmaceutical workflow.

摘要

在口服制剂的生产过程中遇到的片剂缺陷会导致质量问题、时间延迟和成本增加。内部片剂开裂通常不在常规检查中测量,但会导致片剂断裂等批次失效。X 射线计算机断层扫描(XRCT)已广泛用于分析口服片剂的内部裂缝。然而,XRCT 通常会生成大量的图像数据(每个数据集有数千个 2D 切片),需要经过培训的专业人员进行分析。用户引导的手动分析既繁琐、耗时,又具有主观性,可能导致统计表示不佳和结果不一致。在这项研究中,我们开发了一种分析程序,该程序结合了深度学习卷积神经网络,可完全实现口服片剂的 XRCT 图像分析,以进行内部裂缝检测。该计算机程序可实现内部片剂裂缝的稳健量化,平均准确率为 94%。此外,深度学习工具完全自动化,具有能够分析数百片片剂的吞吐量。我们还探讨了深度学习分析程序对不同产品(例如,不同类型的瓶子和片剂)的适应性。最后,深度学习工具已有效地应用于工业制药工作流程中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验