Stróżyk Maciej, Pacławski Adam, Mendyk Aleksander
Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland.
Pharmaceutics. 2025 May 31;17(6):728. doi: 10.3390/pharmaceutics17060728.
This study delves into the potential use of real-time UV imaging of the dissolution process combined with convolutional neural networks (CNNs) to develop multidimensional models representing the relation between in vitro and in vivo performance of drugs. We utilised the capabilities of the SDi2 apparatus (Pion) to capture multidimensional dissolution data for two distinct Glucophage tablets: immediate-release 500 mg tablets and extended-release 750 mg tablets. The dissolution process was studied in various media, including a compendial pH 1.2 HCl solution, reverse osmosis water, and pH 6.8 phosphate buffer. Moreover, results were captured at different wavelengths (255 nm and 520 nm) to provide a comprehensive view of the process. Our investigation focuses on two primary approaches: (1) analysing numerical data extracted from SDi2 images via a surface characterisation tool, using traditional machine learning techniques, including Scikit-learn, Tensorflow, and AutoML, and (2) utilising raw SDi2 images to train CNNs for direct prediction of in vivo metformin plasma concentrations. This dual approach allows us to assess the impact of data extraction on model performance and explore the potential of CNNs to capture complex dissolution patterns directly from images, potentially revealing hidden information not captured by traditional numerical data extraction methods.
本研究深入探讨了将溶出过程的实时紫外成像与卷积神经网络(CNN)相结合的潜在用途,以开发代表药物体外和体内性能之间关系的多维模型。我们利用SDi2仪器(Pion)的功能,为两种不同的格华止片剂(速释500毫克片剂和缓释750毫克片剂)捕获多维溶出数据。在包括药典规定的pH 1.2盐酸溶液、反渗透水和pH 6.8磷酸盐缓冲液在内的各种介质中研究了溶出过程。此外,在不同波长(255纳米和520纳米)下捕获结果,以全面了解该过程。我们的研究集中在两种主要方法上:(1)使用包括Scikit-learn、TensorFlow和自动机器学习(AutoML)在内的传统机器学习技术,通过表面表征工具分析从SDi2图像中提取的数值数据;(2)利用原始SDi2图像训练CNN,以直接预测体内二甲双胍血浆浓度。这种双重方法使我们能够评估数据提取对模型性能的影响,并探索CNN直接从图像中捕获复杂溶出模式的潜力,这可能揭示传统数值数据提取方法未捕获的隐藏信息。