文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多机器学习算法的类风湿关节炎新型生物标志物的鉴定和验证:硅基和体内研究。

Identification and Verification of Novel Biomarkers Involving Rheumatoid Arthritis with Multimachine Learning Algorithms: An In Silicon and In Vivo Study.

机构信息

Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China.

Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.

出版信息

Mediators Inflamm. 2024 Feb 14;2024:3188216. doi: 10.1155/2024/3188216. eCollection 2024.


DOI:10.1155/2024/3188216
PMID:38385005
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10881253/
Abstract

BACKGROUND: Rheumatoid arthritis (RA) remains one of the most prevalent chronic joint diseases. However, due to the heterogeneity among RA patients, there are still no robust diagnostic and therapeutic biomarkers for the diagnosis and treatment of RA. METHODS: We retrieved RA-related and pan-cancer information datasets from the Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively. Six gene expression profiles and corresponding clinical information of GSE12021, GSE29746, GSE55235, GSE55457, GSE77298, and GSE89408 were adopted to perform differential expression gene analysis, enrichment, and immune component difference analyses of RA. Four machine learning algorithms, including LASSO, RF, XGBoost, and SVM, were used to identify RA-related biomarkers. Unsupervised cluster analysis was also used to decipher the heterogeneity of RA. A four-signature-based nomogram was constructed and verified to specifically diagnose RA and osteoarthritis (OA) from normal tissues. Consequently, RA-HFLS cell was utilized to investigate the biological role of in RA. In addition, comparisons of diagnostic efficacy and biological roles among and other classic biomarkers of RA were also performed. RESULTS: Immune and stromal components were highly enriched in RA. Chemokine- and Th cell-related signatures were significantly activated in RA tissues. Four promising and novel biomarkers, including , , , and , were identified and verified, which could be treated as novel treatment and diagnostic targets for RA. Nomograms based on the four signatures might aid in distinguishing and diagnosing RA, which reached a satisfactory performance in both training (AUC = 0.894) and testing (AUC = 0.843) cohorts. Two distinct subtypes of RA patients were identified, which further verified that these four signatures might be involved in the immune infiltration process. Furthermore, knockdown of could significantly suppress the proliferation and invasion ability of RA cell line and thus could be treated as a novel therapeutic target. CRTAM owned a great diagnostic performance for RA than previous biomarkers including , , , , , , and . Mechanically, CRTAM could also be involved in the progression through immune dysfunction, fatty acid metabolism, and genomic instability across several cancer subtypes. CONCLUSION: , , , and were highly expressed in RA tissues and might function as pivotal diagnostic and treatment targets by deteriorating the immune dysfunction state. In addition, might fuel cancer progression through immune signals, especially among RA patients.

摘要

背景:类风湿关节炎(RA)仍然是最常见的慢性关节疾病之一。然而,由于 RA 患者存在异质性,目前仍没有用于 RA 诊断和治疗的稳健诊断和治疗生物标志物。

方法:我们分别从基因表达综合数据库和癌症基因组图谱数据库中检索了与 RA 相关的信息和泛癌信息数据集。采用 GSE12021、GSE29746、GSE55235、GSE55457、GSE77298 和 GSE89408 中的六个基因表达谱和相应的临床信息,进行 RA 的差异表达基因分析、富集分析和免疫成分差异分析。使用 LASSO、RF、XGBoost 和 SVM 四种机器学习算法来识别 RA 相关的生物标志物。还进行了无监督聚类分析以破译 RA 的异质性。构建并验证了基于四个特征的列线图,以特异性地从正常组织中诊断 RA 和骨关节炎(OA)。随后,利用 RA-HFLS 细胞来研究在 RA 中的生物学作用。此外,还比较了和其他 RA 经典生物标志物之间的诊断效能和生物学作用。

结果:在 RA 中高度富集了免疫和基质成分。趋化因子和 Th 细胞相关的特征在 RA 组织中明显激活。鉴定并验证了四个有前途的新型生物标志物,包括、、、和,它们可以作为 RA 的新型治疗和诊断靶点。基于四个特征的列线图可能有助于区分和诊断 RA,在训练(AUC=0.894)和测试(AUC=0.843)队列中都取得了令人满意的性能。确定了两种不同的 RA 患者亚型,这进一步验证了这四个特征可能参与了免疫浸润过程。此外,CRTAM 的敲低可以显著抑制 RA 细胞系的增殖和侵袭能力,因此可以作为一种新的治疗靶点。CRTAM 对 RA 的诊断性能优于包括、、、、、、和在内的以前的生物标志物。在机制上,CRTAM 还可以通过多种癌症亚型的免疫功能障碍、脂肪酸代谢和基因组不稳定性参与癌症的进展。

结论:、、、在 RA 组织中高表达,可能通过恶化免疫功能障碍状态,作为关键的诊断和治疗靶点。此外,CRTAM 可能通过免疫信号,尤其是在 RA 患者中,促进癌症的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/74262f63850f/MI2024-3188216.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/7fe3fda08637/MI2024-3188216.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/41ccb5e5e6c5/MI2024-3188216.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/f562c5e7f3af/MI2024-3188216.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/5fcecffc339a/MI2024-3188216.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/afcd571a4b3c/MI2024-3188216.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/ba4192ce756c/MI2024-3188216.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/d51bd86a580f/MI2024-3188216.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/248567900527/MI2024-3188216.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/74262f63850f/MI2024-3188216.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/7fe3fda08637/MI2024-3188216.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/41ccb5e5e6c5/MI2024-3188216.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/f562c5e7f3af/MI2024-3188216.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/5fcecffc339a/MI2024-3188216.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/afcd571a4b3c/MI2024-3188216.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/ba4192ce756c/MI2024-3188216.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/d51bd86a580f/MI2024-3188216.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/248567900527/MI2024-3188216.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aac/10881253/74262f63850f/MI2024-3188216.009.jpg

相似文献

[1]
Identification and Verification of Novel Biomarkers Involving Rheumatoid Arthritis with Multimachine Learning Algorithms: An In Silicon and In Vivo Study.

Mediators Inflamm. 2024

[2]
Identification and Validation of Hub Genes for Predicting Treatment Targets and Immune Landscape in Rheumatoid Arthritis.

Biomed Res Int. 2022

[3]
Integrative analysis and validation of necroptosis-related molecular signature for evaluating diagnosis and immune features in Rheumatoid arthritis.

Int Immunopharmacol. 2024-4-20

[4]
Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network.

Clin Rheumatol. 2022-4

[5]
Identification of Disease-Specific Hub Biomarkers and Immune Infiltration in Osteoarthritis and Rheumatoid Arthritis Synovial Tissues by Bioinformatics Analysis.

Dis Markers. 2021

[6]
Identification and validation of metabolism-related genes signature and immune infiltration landscape of rheumatoid arthritis based on machine learning.

Aging (Albany NY). 2023-5-10

[7]
Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome‑wide gene expression profiling analysis.

Mol Med Rep. 2018-11-20

[8]
Identification of differential key biomarkers in the synovial tissue between rheumatoid arthritis and osteoarthritis using bioinformatics analysis.

Clin Rheumatol. 2021-12

[9]
Identification of Critical Biomarkers and Immune Infiltration in Rheumatoid Arthritis Based on WGCNA and LASSO Algorithm.

Front Immunol. 2022-6-29

[10]
Machine learning and bioinformatics analysis to identify autophagy-related biomarkers in peripheral blood for rheumatoid arthritis.

Front Genet. 2023-9-13

引用本文的文献

[1]
Identification and validation of CKAP2 as a novel biomarker in the development and progression of rheumatoid arthritis.

Front Immunol. 2025-6-25

[2]
Explainable Boosting Machines Identify Key Metabolomic Biomarkers in Rheumatoid Arthritis.

Medicina (Kaunas). 2025-4-30

本文引用的文献

[1]
Analysis and Experimental Validation of Rheumatoid Arthritis Innate Immunity Gene CYFIP2 and Pan-Cancer.

Front Immunol. 2022

[2]
Identification of Critical Biomarkers and Immune Infiltration in Rheumatoid Arthritis Based on WGCNA and LASSO Algorithm.

Front Immunol. 2022-6-29

[3]
Bioinformatics-Led Discovery of Osteoarthritis Biomarkers and Inflammatory Infiltrates.

Front Immunol. 2022

[4]
Accurate Machine Learning Model to Diagnose Chronic Autoimmune Diseases Utilizing Information From B Cells and Monocytes.

Front Immunol. 2022

[5]
Bioinformatics Analysis Identified the Hub Genes, mRNA-miRNA-lncRNA Axis, and Signaling Pathways Involved in Rheumatoid Arthritis Pathogenesis.

Int J Gen Med. 2022-4-8

[6]
Identification of Tissue-Specific Expressed Hub Genes and Potential Drugs in Rheumatoid Arthritis Using Bioinformatics Analysis.

Front Genet. 2022-3-18

[7]
Casein Kinase II exacerbates rheumatoid arthritis via promoting Th1 and Th17 cell inflammatory responses.

Expert Opin Ther Targets. 2021-11

[8]
Key immune-related gene ITGB2 as a prognostic signature for acute myeloid leukemia.

Ann Transl Med. 2021-9

[9]
Targeting articular Mmp13 in OA.

Nat Rev Rheumatol. 2021-11

[10]
Identifying Immune Cell Infiltration and Effective Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis.

Front Immunol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索