Vega Yon George G
Division of Epidemiology, University of Utah.
J Am Stat Assoc. 2023;118(544):2228-2231. doi: 10.1080/01621459.2023.2252041. Epub 2023 Oct 19.
The recent work by Krivitsky, Coletti & Hens [KCH] provides an important new contribution to the Exponential-Family Random Graph Models [ERGMs], a start-to-finish approach to dealing with multi-network ERGMs. Although multi-network ERGMs have been around for a while (mostly in the form of block-diagonal models and multi-level ERGMs, see Duxbury and Wertsching (2023), Wang et al. (2013), Slaughter and Koehly (2016)), not much care has been given to the estimation and post-estimation steps. In their paper, Krivitsky, Coletti & Hens give a detailed layout of how to build, estimate, and analyze multi-ERGMs with heterogeneous data sources. In this comment, I will focus on two issues the authors did not discuss, namely, sample size requirements and multicollinearity.
克里维茨基、科莱蒂和亨斯[KCH]最近的工作为指数族随机图模型[ERGMs]做出了重要的新贡献,这是一种处理多网络ERGMs的从头到尾的方法。尽管多网络ERGMs已经存在了一段时间(主要以块对角模型和多层次ERGMs的形式出现,见达克斯伯里和韦尔廷(2023年)、王等人(2013年)、斯劳特和科埃利(2016年)),但对估计和估计后步骤的关注并不多。在他们的论文中,克里维茨基、科莱蒂和亨斯详细阐述了如何利用异构数据源构建、估计和分析多ERGMs。在这篇评论中,我将关注作者未讨论的两个问题,即样本量要求和多重共线性。