Suppr超能文献

小网络中的功效与多重共线性:对克里维茨基、科莱蒂和亨斯所著《两个数据集的故事:网络样本推断的代表性与普遍性》的讨论

Power and multicollinearity in small networks: A discussion of "Tale of Two Datasets: Representativeness and Generalisability of Inference for Samples of Networks" by Krivitsky, Coletti & Hens.

作者信息

Vega Yon George G

机构信息

Division of Epidemiology, University of Utah.

出版信息

J Am Stat Assoc. 2023;118(544):2228-2231. doi: 10.1080/01621459.2023.2252041. Epub 2023 Oct 19.

Abstract

The recent work by Krivitsky, Coletti & Hens [KCH] provides an important new contribution to the Exponential-Family Random Graph Models [ERGMs], a start-to-finish approach to dealing with multi-network ERGMs. Although multi-network ERGMs have been around for a while (mostly in the form of block-diagonal models and multi-level ERGMs, see Duxbury and Wertsching (2023), Wang et al. (2013), Slaughter and Koehly (2016)), not much care has been given to the estimation and post-estimation steps. In their paper, Krivitsky, Coletti & Hens give a detailed layout of how to build, estimate, and analyze multi-ERGMs with heterogeneous data sources. In this comment, I will focus on two issues the authors did not discuss, namely, sample size requirements and multicollinearity.

摘要

克里维茨基、科莱蒂和亨斯[KCH]最近的工作为指数族随机图模型[ERGMs]做出了重要的新贡献,这是一种处理多网络ERGMs的从头到尾的方法。尽管多网络ERGMs已经存在了一段时间(主要以块对角模型和多层次ERGMs的形式出现,见达克斯伯里和韦尔廷(2023年)、王等人(2013年)、斯劳特和科埃利(2016年)),但对估计和估计后步骤的关注并不多。在他们的论文中,克里维茨基、科莱蒂和亨斯详细阐述了如何利用异构数据源构建、估计和分析多ERGMs。在这篇评论中,我将关注作者未讨论的两个问题,即样本量要求和多重共线性。

相似文献

3
Practical Network Modeling via Tapered Exponential-family Random Graph Models.通过渐缩指数族随机图模型进行实用网络建模
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
4
A survey on exponential random graph models: an application perspective.指数随机图模型综述:应用视角
PeerJ Comput Sci. 2020 Apr 6;6:e269. doi: 10.7717/peerj-cs.269. eCollection 2020.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验