Suppr超能文献

朝着 DNA 自动机的发展:受 miRNA 调控的模块化 RNA 切割脱氧核酶逻辑门。

Towards the development of a DNA automaton: modular RNA-cleaving deoxyribozyme logic gates regulated by miRNAs.

机构信息

Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.

Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation.

出版信息

Analyst. 2024 Mar 11;149(6):1947-1957. doi: 10.1039/d3an02178e.

Abstract

Advancements in DNA computation have unlocked molecular-scale information processing possibilities, utilizing the intrinsic properties of DNA for complex logical operations with transformative applications in biomedicine. DNA computation shows promise in molecular diagnostics, enabling precise and sensitive detection of genetic mutations and disease biomarkers. Moreover, it holds potential for targeted gene regulation, facilitating personalized therapeutic interventions with enhanced efficacy and reduced side effects. Herein, we have developed six DNAzyme-based logic gates able to process YES, AND, and NOT Boolean logic. The novelty of this work lies in their additional functionalization with a common DNA scaffold for increased cooperativity in input recognition. Moreover, we explored hierarchical input binding to multi-input logic gates, which helped gate optimization. Additionally, we developed a new design of an allosteric hairpin switch used to implement NOT logic. All DNA logic gates achieved the desired true-to-false output signal when detecting a panel of miRNAs, known for their important role in malignancy regulation. This is the first example of DNAzyme-based logic gates having all input-recognizing elements integrated in a single DNA nanostructure, which provides new opportunities for building DNA automatons for diagnosis and therapy of human diseases.

摘要

DNA 计算的进步解锁了分子尺度信息处理的可能性,利用 DNA 的固有特性进行复杂的逻辑运算,在生物医学领域具有变革性的应用。DNA 计算在分子诊断中有很大的应用潜力,可以精确和敏感地检测基因突变和疾病生物标志物。此外,它还有望用于靶向基因调控,促进具有更高疗效和更低副作用的个性化治疗干预。在此,我们开发了六个基于 DNA 酶的逻辑门,能够处理 YES、AND 和 NOT 布尔逻辑。这项工作的新颖之处在于,它们通过共同的 DNA 支架进行了额外的功能化,以提高输入识别的协同性。此外,我们还探索了多输入逻辑门的层次输入结合,这有助于门的优化。此外,我们还开发了一种新的变构发夹开关设计,用于实现 NOT 逻辑。当检测到一组已知在恶性肿瘤调控中起重要作用的 miRNAs 时,所有 DNA 逻辑门都实现了所需的真到假输出信号。这是第一个基于 DNA 酶的逻辑门的例子,其所有输入识别元件都集成在单个 DNA 纳米结构中,这为构建用于人类疾病诊断和治疗的 DNA 自动机提供了新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验