Suppr超能文献

纳米纤维多结构域肽水凝胶为 T 细胞提供三维、细胞相容的环境,用于细胞扩增和抗原特异性杀伤。

Nanofibrous MultiDomain Peptide Hydrogels Provide T Cells a 3D, Cytocompatible Environment for Cell Expansion and Antigen-Specific Killing.

机构信息

Department of Chemistry, Rice University, Houston, Texas 77005, United States.

Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States.

出版信息

ACS Biomater Sci Eng. 2024 Mar 11;10(3):1448-1460. doi: 10.1021/acsbiomaterials.3c01617. Epub 2024 Feb 22.

Abstract

T cells have the ability to recognize and kill specific target cells, giving therapies based on their potential for treating infection, diabetes, cancer, and other diseases. However, the advancement of T cell-based treatments has been hindered by difficulties in their ex vivo activation and expansion, the number of cells required for sustained in vivo levels, and preferential localization following systemic delivery. Biomaterials may help to overcome many of these challenges by providing a combined means of proliferation, antigen presentation, and cell localization upon delivery. In this work, we studied self-assembling Multidomain Peptides (MDPs) as scaffolds for T cell culture, activation, and expansion. We evaluated the effect of different MDP chemistries on their biocompatibility with T cells and the maintenance of antigen specificity for T cells cultured in the hydrogels. We also examined the potential application of MDPs as scaffolds for T cell activation and expansion and the effect of MDP encapsulation on T cell phenotype. We found high cell viability when T cells were encapsulated in noncationic MDPs, O and D, and superior retention of antigen specificity and tumor-reactivity were preserved in the anionic MDP, D. Maintenance of antigen recognition by T cells in D hydrogels was confirmed by quantifying immune synapses of T Cells engaged with antigen-presenting cancer cells. When 3D cultured in anionic MDP D coloaded with anti-CD3, anti-CD28, IL2, IL7, and IL15, we observed successful T cell proliferation evidenced by upregulation of CD27 and CD107a. This study is the first to investigate the potential of self-assembling peptide-based hydrogels as 3D scaffolds for human T cell applications and demonstrates that MDP hydrogels are a viable platform for enabling T cell in vitro activation, expansion, and maintenance of antigen specificity and therefore a promising tool for future T cell-based therapies.

摘要

T 细胞具有识别和杀死特定靶细胞的能力,基于其治疗感染、糖尿病、癌症和其他疾病的潜力,为治疗提供了可能。然而,基于 T 细胞的治疗方法的进展受到其体外激活和扩增的困难、体内持续水平所需的细胞数量以及全身给药后的优先定位的阻碍。生物材料通过提供增殖、抗原呈递和输送后细胞定位的综合手段,可能有助于克服许多这些挑战。在这项工作中,我们研究了自组装多结构域肽 (MDP) 作为 T 细胞培养、激活和扩增的支架。我们评估了不同 MDP 化学性质对其与 T 细胞的生物相容性的影响,以及在水凝胶中培养的 T 细胞对抗原特异性的维持。我们还研究了 MDP 作为 T 细胞激活和扩增支架的潜在应用以及 MDP 包封对 T 细胞表型的影响。我们发现,当 T 细胞被包裹在非阳离子 MDP O 和 D 中时,细胞存活率很高,并且在阴离子 MDP D 中保留了更好的抗原特异性和肿瘤反应性。通过定量分析与抗原呈递癌细胞结合的 T 细胞的免疫突触,证实了 D 水凝胶中 T 细胞对抗原识别的维持。当 3D 在阴离子 MDP D 中与抗 CD3、抗 CD28、IL2、IL7 和 IL15 共负载时,我们观察到成功的 T 细胞增殖,表现为 CD27 和 CD107a 的上调。这项研究首次调查了自组装肽基水凝胶作为人类 T 细胞应用的 3D 支架的潜力,并表明 MDP 水凝胶是实现 T 细胞体外激活、扩增和维持抗原特异性的可行平台,因此是未来 T 细胞治疗的有前途的工具。

相似文献

1
Nanofibrous MultiDomain Peptide Hydrogels Provide T Cells a 3D, Cytocompatible Environment for Cell Expansion and Antigen-Specific Killing.
ACS Biomater Sci Eng. 2024 Mar 11;10(3):1448-1460. doi: 10.1021/acsbiomaterials.3c01617. Epub 2024 Feb 22.
2
3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
Adv Mater. 2023 Mar;35(11):e2210378. doi: 10.1002/adma.202210378. Epub 2023 Jan 25.
3
Nanofibrous Peptide Hydrogels Leveraging Histidine to Modulate pH-Responsive Supramolecular Assembly and Antibody Release.
Biomacromolecules. 2025 Jan 13;26(1):490-502. doi: 10.1021/acs.biomac.4c01296. Epub 2024 Dec 30.
4
Sequence effects of self-assembling multidomain peptide hydrogels on encapsulated SHED cells.
Biomacromolecules. 2014 Jun 9;15(6):2004-11. doi: 10.1021/bm500075r. Epub 2014 May 12.
5
Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury.
Biomaterials. 2021 Jan;265:120401. doi: 10.1016/j.biomaterials.2020.120401. Epub 2020 Sep 19.
6
Injectable Biomimetic Hydrogels as Tools for Efficient T Cell Expansion and Delivery.
Front Immunol. 2018 Nov 28;9:2798. doi: 10.3389/fimmu.2018.02798. eCollection 2018.
7
Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels.
ACS Biomater Sci Eng. 2015 Sep 14;1(9):845-854. doi: 10.1021/acsbiomaterials.5b00210. Epub 2015 Aug 20.
8
Orthogonal Self-Assembly of Amphiphilic Peptide Hydrogels and Liposomes Results in Composite Materials with Tunable Release Profiles.
Biomacromolecules. 2023 Nov 13;24(11):5018-5026. doi: 10.1021/acs.biomac.3c00664. Epub 2023 Sep 10.
9
Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
Acta Biomater. 2017 Jun;55:183-193. doi: 10.1016/j.actbio.2017.03.041. Epub 2017 Mar 30.
10
Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering.
Acta Biomater. 2018 Mar 15;69:107-119. doi: 10.1016/j.actbio.2017.12.012. Epub 2017 Dec 15.

引用本文的文献

1
[Biomaterials of different sizes for enhanced adoptive cell transfer therapy in solid tumors].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jul 15;54(4):469-478. doi: 10.3724/zdxbyxb-2024-0651.

本文引用的文献

1
T cell-responsive macroporous hydrogels for in situ T cell expansion and enhanced antitumor efficacy.
Biomaterials. 2023 Feb;293:121972. doi: 10.1016/j.biomaterials.2022.121972. Epub 2022 Dec 16.
2
Multidomain peptide hydrogel adjuvants elicit strong bias towards humoral immunity.
Biomater Sci. 2022 Oct 25;10(21):6217-6229. doi: 10.1039/d2bm01242a.
3
6
Cell therapies in the clinic.
Bioeng Transl Med. 2021 Feb 26;6(2):e10214. doi: 10.1002/btm2.10214. eCollection 2021 May.
7
Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets.
Nat Biomed Eng. 2021 Sep;5(9):1038-1047. doi: 10.1038/s41551-021-00712-1. Epub 2021 Apr 26.
8
CAR-T cell therapy: current limitations and potential strategies.
Blood Cancer J. 2021 Apr 6;11(4):69. doi: 10.1038/s41408-021-00459-7.
9
Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation.
Endocr Rev. 2021 Mar 15;42(2):198-218. doi: 10.1210/endrev/bnaa028.
10
A Hydrogel-Integrated Culture Device to Interrogate T Cell Activation with Physicochemical Cues.
ACS Appl Mater Interfaces. 2020 Oct 21;12(42):47355-47367. doi: 10.1021/acsami.0c16478. Epub 2020 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验