Suppr超能文献

3D 打印自组装纳米纤维多结构域肽水凝胶。

3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.

机构信息

Department of Bioengineering, Rice University, Houston, TX, 77005, USA.

Department of Chemistry, Rice University, Houston, TX, 77005, USA.

出版信息

Adv Mater. 2023 Mar;35(11):e2210378. doi: 10.1002/adma.202210378. Epub 2023 Jan 25.

Abstract

3D printing has become one of the primary fabrication strategies used in biomedical research. Recent efforts have focused on the 3D printing of hydrogels to create structures that better replicate the mechanical properties of biological tissues. These pose a unique challenge, as soft materials are difficult to pattern in three dimensions with high fidelity. Currently, a small number of biologically derived polymers that form hydrogels are frequently reused for 3D printing applications. Thus, there exists a need for novel hydrogels with desirable biological properties that can be used as 3D printable inks. In this work, the printability of multidomain peptides (MDPs), a class of self-assembling peptides that form a nanofibrous hydrogel at low concentrations, is established. MDPs with different charge functionalities are optimized as distinct inks and are used to create complex 3D structures, including multi-MDP prints. Additionally, printed MDP constructs are used to demonstrate charge-dependent differences in cellular behavior in vitro. This work presents the first time that self-assembling peptides have been used to print layered structures with overhangs and internal porosity. Overall, MDPs are a promising new class of 3D printable inks that are uniquely peptide-based and rely solely on supramolecular mechanisms for assembly.

摘要

3D 打印已成为生物医学研究中主要的制造策略之一。最近的研究重点集中在 3D 打印水凝胶,以创建更好地复制生物组织机械性能的结构。这带来了独特的挑战,因为软材料很难以高精度进行三维打印。目前,经常重复使用少量生物衍生的聚合物来形成水凝胶,用于 3D 打印应用。因此,需要具有理想生物特性的新型水凝胶,可用作 3D 可打印墨水。在这项工作中,建立了多结构域肽(MDP)的可打印性,多结构域肽是一类在低浓度下形成纳米纤维水凝胶的自组装肽。优化了具有不同电荷功能的 MDP 作为不同的墨水,并用于创建复杂的 3D 结构,包括多 MDP 打印。此外,打印的 MDP 结构用于体外证明细胞行为的电荷依赖性差异。这项工作首次展示了自组装肽用于打印具有悬垂和内部孔隙的分层结构。总体而言,MDP 是一类很有前途的新型 3D 可打印墨水,它们是独特的肽基墨水,仅依赖于超分子机制进行组装。

相似文献

1
3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
Adv Mater. 2023 Mar;35(11):e2210378. doi: 10.1002/adma.202210378. Epub 2023 Jan 25.
2
Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.
Biomed Mater. 2015 Dec 23;11(1):014103. doi: 10.1088/1748-6041/11/1/014103.
3
Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4009-4026. doi: 10.1021/acsbiomaterials.0c01158. Epub 2020 Nov 10.
4
High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
ACS Appl Mater Interfaces. 2023 Nov 29;15(47):54234-54248. doi: 10.1021/acsami.3c10092. Epub 2023 Nov 14.
5
3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering.
Biotechnol Bioeng. 2022 Jan;119(1):118-133. doi: 10.1002/bit.27954. Epub 2021 Oct 14.
6
Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.
Acta Biomater. 2019 Sep 1;95:50-59. doi: 10.1016/j.actbio.2019.05.032. Epub 2019 May 22.
7
3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure.
Small. 2021 Feb;17(5):e2005743. doi: 10.1002/smll.202005743. Epub 2021 Jan 15.
8
3D-printing porosity: A new approach to creating elevated porosity materials and structures.
Acta Biomater. 2018 May;72:94-109. doi: 10.1016/j.actbio.2018.03.039. Epub 2018 Mar 27.
10
3D Printable Dynamic Hydrogel: As Simple as it Gets!
Macromol Rapid Commun. 2022 Nov;43(21):e2200449. doi: 10.1002/marc.202200449. Epub 2022 Aug 4.

引用本文的文献

1
Bottom-up Biomaterial strategies for creating tailored stem cells in regenerative medicine.
Front Bioeng Biotechnol. 2025 May 20;13:1581292. doi: 10.3389/fbioe.2025.1581292. eCollection 2025.
2
Recent Advances in Peptide-Functionalized Hydrogels for Bone Tissue Engineering.
ACS Biomater Sci Eng. 2025 Apr 14;11(4):1970-1989. doi: 10.1021/acsbiomaterials.4c02198. Epub 2025 Apr 3.
3
High-Performance Sunlight-Induced Polymerized Hydrogels and Applications in 3D and 4D Printing.
Small. 2025 Feb;21(5):e2411888. doi: 10.1002/smll.202411888. Epub 2024 Dec 18.
4
Biofabrication and biomanufacturing in Ireland and the UK.
Biodes Manuf. 2024;7(6):825-856. doi: 10.1007/s42242-024-00316-z. Epub 2024 Oct 23.
5
Insights into the Hierarchical Assembly of a Chemically Diverse Peptide Hydrogel Derived from Human Semenogelin I.
ACS Nano. 2024 Nov 12;18(45):31109-31122. doi: 10.1021/acsnano.4c08672. Epub 2024 Nov 1.
7
Recent advances of 3D-printing in spine surgery.
Surg Neurol Int. 2024 Aug 23;15:297. doi: 10.25259/SNI_460_2024. eCollection 2024.
8
Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry.
Adv Mater. 2024 Oct;36(42):e2404235. doi: 10.1002/adma.202404235. Epub 2024 Jul 1.
9
Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers.
ACS Nano. 2024 May 14;18(19):12477-12488. doi: 10.1021/acsnano.4c02030. Epub 2024 May 3.
10
Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers.
bioRxiv. 2024 Feb 4:2024.02.02.578651. doi: 10.1101/2024.02.02.578651.

本文引用的文献

1
Chemical strategies to engineer hydrogels for cell culture.
Nat Rev Chem. 2022 Oct;6(10):726-744. doi: 10.1038/s41570-022-00420-7. Epub 2022 Aug 30.
2
Multidomain peptide hydrogel adjuvants elicit strong bias towards humoral immunity.
Biomater Sci. 2022 Oct 25;10(21):6217-6229. doi: 10.1039/d2bm01242a.
3
3D Bioprinted Patient-Specific Extracellular Matrix Scaffolds for Soft Tissue Defects.
Adv Healthc Mater. 2022 Dec;11(24):e2200866. doi: 10.1002/adhm.202200866. Epub 2022 Sep 23.
4
Nanoengineered Granular Hydrogel Bioinks with Preserved Interconnected Microporosity for Extrusion Bioprinting.
Small. 2022 Sep;18(37):e2202390. doi: 10.1002/smll.202202390. Epub 2022 Aug 3.
5
Functional Trachea Reconstruction Using 3D-Bioprinted Native-Like Tissue Architecture Based on Designable Tissue-Specific Bioinks.
Adv Sci (Weinh). 2022 Oct;9(29):e2202181. doi: 10.1002/advs.202202181. Epub 2022 Jul 26.
6
Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs.
Adv Sci (Weinh). 2022 Sep;9(25):e2201392. doi: 10.1002/advs.202201392. Epub 2022 Jun 16.
8
Simultaneous One-Pot Interpenetrating Network Formation to Expand 3D Processing Capabilities.
Adv Mater. 2022 Jul;34(28):e2202261. doi: 10.1002/adma.202202261. Epub 2022 Jun 4.
9
Programming Cellular Alignment in Engineered Cardiac Tissue via Bioprinting Anisotropic Organ Building Blocks.
Adv Mater. 2022 Jul;34(26):e2200217. doi: 10.1002/adma.202200217. Epub 2022 May 25.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验