Suppr超能文献

使用具有可调可塑性和内存逻辑操作的可重构有机神经晶体管的任务自适应神经形态计算。

Task-Adaptive Neuromorphic Computing Using Reconfigurable Organic Neuristors with Tunable Plasticity and Logic-in-Memory Operations.

作者信息

Jiang Sai, Peng Lichao, Li Longfei, Dai Qinyong, Pei Mengjiao, Wu Chaoran, Su Jian, Gu Ding, Zhang Han, Guo Huafei, Qiu Jianhua, Li Yun

机构信息

School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.

出版信息

J Phys Chem Lett. 2024 Mar 7;15(9):2301-2310. doi: 10.1021/acs.jpclett.4c00284. Epub 2024 Feb 22.

Abstract

The brain's function can be dynamically reconfigured through a unified neuron-synapse architecture, enabling task-adaptive network-level topology for energy-efficient learning and inferencing. Here, we demonstrate an organic neuristor utilizing a ferroelectric-electrolyte dielectric interface. This neuristor enables tunable short- to long-term plasticity and reconfigurable logic-in-memory functions by controlling the interfacial interaction between electrolyte ions and ferroelectric dipoles. Notably, the short-term plasticity of the organic neuristor allows for power-efficient reservoir computing in edge-computing scenarios, exhibiting impressive recognition accuracy, including images (90.6%) and acoustic signals (97.7%). For high-performance computing tasks, the neuristor based on long-term plasticity and logic-in-memory operations can construct all of the hardware circuits of a binarized neural network (BNN) within a unified framework. The BNN demonstrates excellent noise tolerance, achieving high recognition accuracies of 99.2% and 86.4% on the MNIST and CIFAR-10 data sets, respectively. Consequently, our research sheds light on the development of power-efficient artificial intelligence systems.

摘要

大脑的功能可以通过统一的神经元 - 突触架构进行动态重新配置,从而实现任务自适应的网络级拓扑结构,以实现高效节能的学习和推理。在此,我们展示了一种利用铁电 - 电解质介电界面的有机神经晶体管。这种神经晶体管通过控制电解质离子与铁电偶极子之间的界面相互作用,实现了可调谐的短期到长期可塑性以及可重构的逻辑存储功能。值得注意的是,有机神经晶体管的短期可塑性允许在边缘计算场景中进行高效节能的储层计算,展现出令人印象深刻的识别准确率,包括图像(90.6%)和声信号(97.7%)。对于高性能计算任务,基于长期可塑性和逻辑存储操作的神经晶体管可以在统一框架内构建二值神经网络(BNN)的所有硬件电路。该BNN表现出出色的抗噪声能力,在MNIST和CIFAR - 10数据集上分别实现了99.2%和86.4%的高识别准确率。因此,我们的研究为高效节能人工智能系统的发展提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验