文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过实现互穿网络结构来制备高性能生物聚合物凝胶:类型、应用和凝胶化策略综述。

Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies.

机构信息

Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.

Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.

出版信息

Adv Colloid Interface Sci. 2024 Mar;325:103113. doi: 10.1016/j.cis.2024.103113. Epub 2024 Feb 15.


DOI:10.1016/j.cis.2024.103113
PMID:38387158
Abstract

Gels derived from single networks of natural polymers (biopolymers) typically exhibit limited physical properties and thus have seen constrained applications in areas like food and medicine. In contrast, gels founded on a synergy of multiple biopolymers, specifically polysaccharides and proteins, with intricate interpenetrating polymer network (IPN) structures, represent a promising avenue for the creation of novel gel materials with significantly enhanced properties and combined advantages. This review begins with the scrutiny of newly devised IPN gels formed through a medley of polysaccharides and/or proteins, alongside an introduction of their practical applications in the realm of food, medicine, and environmentally friendly solutions. Finally, based on the fact that the IPN gelation process and mechanism are driven by different inducing factors entwined with a diverse amalgamation of polysaccharides and proteins, our survey underscores the potency of physical, chemical, and enzymatic triggers in orchestrating the construction of crosslinked networks within these biomacromolecules. In these mixed systems, each specific inducer aligns with distinct polysaccharides and proteins, culminating in the generation of semi-IPN or fully-IPN gels through the intricate interpenetration between single networks and polymer chains or between two networks, respectively. The resultant IPN gels stand as paragons of excellence, characterized by their homogeneity, dense network structures, superior textural properties (e.g., hardness, elasticity, adhesion, cohesion, and chewability), outstanding water-holding capacity, and heightened thermal stability, along with guaranteed biosafety (e.g., nontoxicity and biocompatibility) and biodegradability. Therefore, a judicious selection of polymer combinations allows for the development of IPN gels with customized functional properties, adept at meeting precise application requirements.

摘要

由天然聚合物(生物聚合物)单网络衍生而来的凝胶通常表现出有限的物理性质,因此在食品和医学等领域的应用受到限制。相比之下,基于多糖和/或蛋白质的协同作用,具有复杂的互穿聚合物网络(IPN)结构的凝胶,代表了创造具有显著增强性能和综合优势的新型凝胶材料的有前途的途径。本综述首先研究了通过多糖和/或蛋白质混合物形成的新型 IPN 凝胶,并介绍了它们在食品、医学和环保解决方案领域的实际应用。最后,基于 IPN 凝胶化过程和机制是由不同的诱导因素驱动的,并且与多糖和蛋白质的多样化组合相关联,我们的研究强调了物理、化学和酶触发因素在协调这些生物大分子中交联网络构建方面的潜力。在这些混合系统中,每个特定的诱导剂都与特定的多糖和蛋白质相匹配,最终通过单网络和聚合物链之间或两个网络之间的复杂互穿分别生成半 IPN 或全 IPN 凝胶。所得的 IPN 凝胶是卓越的典范,其特点是均匀性、密集的网络结构、出色的质地特性(如硬度、弹性、附着力、内聚性和可咀嚼性)、卓越的持水能力和提高的热稳定性,以及保证生物安全性(如无毒和生物相容性)和可生物降解性。因此,明智地选择聚合物组合可以开发出具有定制功能特性的 IPN 凝胶,能够满足精确的应用要求。

相似文献

[1]
Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies.

Adv Colloid Interface Sci. 2024-3

[2]
Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking.

Food Chem. 2018-7-17

[3]
Semi-IPN- and IPN-Based Hydrogels.

Adv Exp Med Biol. 2018

[4]
An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting.

Molecules. 2020-2-10

[5]
Assessing the compressive elasticity and multi-responsive property of gelatin-containing weakly anionic copolymer gels semi-IPN strategy.

Soft Matter. 2022-9-28

[6]
Properties of interpenetrating polymer networks associating fibrin and silk fibroin networks obtained by a double enzymatic method.

Mater Sci Eng C Mater Biol Appl. 2019-7-10

[7]
Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings.

Mater Sci Eng C Mater Biol Appl. 2017-6-23

[8]
Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels.

Mater Today Bio. 2024-2-10

[9]
Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications.

Adv Colloid Interface Sci. 2024-10

[10]
Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nanocrystals: A biodegradable and high-performance solution for adult incontinence pads.

Int J Biol Macromol. 2023-12-31

引用本文的文献

[1]
Tuning Nanostructure of Gels: From Structural and Functional Controls to Food Applications.

Gels. 2025-8-8

[2]
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications.

Gels. 2025-7-26

[3]
Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers.

Gels. 2024-11-27

[4]
Machine Learning-Based Process Optimization in Biopolymer Manufacturing: A Review.

Polymers (Basel). 2024-11-29

[5]
Characterization Methods to Determine Interpenetrating Polymer Network (IPN) in Hydrogels.

Polymers (Basel). 2024-7-18

[6]
Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers.

Int J Mol Sci. 2024-5-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索