Suppr超能文献

超越承诺:评估和减轻CRISPR基因编辑中的脱靶效应以实现更安全的治疗

Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics.

作者信息

Lopes Rui, Prasad Megana K

机构信息

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Centre Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland.

出版信息

Front Bioeng Biotechnol. 2024 Jan 18;11:1339189. doi: 10.3389/fbioe.2023.1339189. eCollection 2023.

Abstract

Over the last decade, CRISPR has revolutionized drug development due to its potential to cure genetic diseases that currently do not have any treatment. CRISPR was adapted from bacteria for gene editing in human cells in 2012 and, remarkably, only 11 years later has seen it's very first approval as a medicine for the treatment of sickle cell disease and transfusion-dependent beta-thalassemia. However, the application of CRISPR systems is associated with unintended off-target and on-target alterations (including small indels, and structural variations such as translocations, inversions and large deletions), which are a source of risk for patients and a vital concern for the development of safe therapies. In recent years, a wide range of methods has been developed to detect unwanted effects of CRISPR-Cas nuclease activity. In this review, we summarize the different methods for off-target assessment, discuss their strengths and limitations, and highlight strategies to improve the safety of CRISPR systems. Finally, we discuss their relevance and application for the pre-clinical risk assessment of CRISPR therapeutics within the current regulatory context.

摘要

在过去十年中,CRISPR彻底改变了药物研发,因为它有潜力治愈目前尚无任何治疗方法的遗传疾病。2012年,CRISPR从细菌中被改造用于人类细胞的基因编辑,值得注意的是,仅仅11年后,它就首次获批作为治疗镰状细胞病和输血依赖型β地中海贫血的药物。然而,CRISPR系统的应用与意外的脱靶和靶向改变(包括小的插入缺失以及结构变异,如易位、倒位和大的缺失)相关,这些是患者的风险来源,也是安全疗法开发的关键问题。近年来,已经开发出多种方法来检测CRISPR-Cas核酸酶活性的不良影响。在本综述中,我们总结了不同的脱靶评估方法,讨论了它们的优缺点,并强调了提高CRISPR系统安全性的策略。最后,我们讨论了它们在当前监管背景下对CRISPR疗法临床前风险评估的相关性和应用。

相似文献

1
Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics.
Front Bioeng Biotechnol. 2024 Jan 18;11:1339189. doi: 10.3389/fbioe.2023.1339189. eCollection 2023.
2
CRISPR nuclease off-target activity and mitigation strategies.
Front Genome Ed. 2022 Nov 10;4:1050507. doi: 10.3389/fgeed.2022.1050507. eCollection 2022.
4
Evolution of CRISPR/Cas Systems for Precise Genome Editing.
Int J Mol Sci. 2023 Sep 18;24(18):14233. doi: 10.3390/ijms241814233.
5
Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
Acc Chem Res. 2019 Jun 18;52(6):1555-1564. doi: 10.1021/acs.accounts.9b00106. Epub 2019 May 17.
8
Small Molecules for Enhancing the Precision and Safety of Genome Editing.
Molecules. 2022 Sep 23;27(19):6266. doi: 10.3390/molecules27196266.
9
CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia.
Hum Genet. 2023 Dec;142(12):1677-1703. doi: 10.1007/s00439-023-02610-9. Epub 2023 Oct 25.
10

引用本文的文献

1
The hidden risks of CRISPR/Cas: structural variations and genome integrity.
Nat Commun. 2025 Aug 5;16(1):7208. doi: 10.1038/s41467-025-62606-z.
2
Gene editing and CRISPR-dependent homology-mediated end joining.
Exp Mol Med. 2025 Jul;57(7):1409-1418. doi: 10.1038/s12276-025-01442-z. Epub 2025 Jul 31.
5
Innovative therapies for inherited retinal dystrophies: navigating DNA, RNA, and protein approaches.
EBioMedicine. 2025 Jun;116:105751. doi: 10.1016/j.ebiom.2025.105751. Epub 2025 May 13.
6
Replacement as an aging intervention.
Nat Aging. 2025 May;5(5):750-764. doi: 10.1038/s43587-025-00858-6. Epub 2025 May 8.
7
The Strategy and Application of Gene Attenuation in Metabolic Engineering.
Microorganisms. 2025 Apr 17;13(4):927. doi: 10.3390/microorganisms13040927.
8
Engineering Useful Microbial Species for Pharmaceutical Applications.
Microorganisms. 2025 Mar 5;13(3):599. doi: 10.3390/microorganisms13030599.
9
Emerging applications of gene editing technologies for the development of climate-resilient crops.
Front Genome Ed. 2025 Mar 10;7:1524767. doi: 10.3389/fgeed.2025.1524767. eCollection 2025.

本文引用的文献

2
Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo.
Nat Commun. 2023 Dec 5;14(1):8051. doi: 10.1038/s41467-023-43904-w.
3
Phage-assisted evolution and protein engineering yield compact, efficient prime editors.
Cell. 2023 Aug 31;186(18):3983-4002.e26. doi: 10.1016/j.cell.2023.07.039.
4
Fanzor is a eukaryotic programmable RNA-guided endonuclease.
Nature. 2023 Aug;620(7974):660-668. doi: 10.1038/s41586-023-06356-2. Epub 2023 Jun 28.
5
Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag.
Nat Methods. 2023 Jun;20(6):898-907. doi: 10.1038/s41592-023-01859-2. Epub 2023 May 8.
6
Off-target effects in CRISPR/Cas9 gene editing.
Front Bioeng Biotechnol. 2023 Mar 9;11:1143157. doi: 10.3389/fbioe.2023.1143157. eCollection 2023.
8
Human genetic diversity alters off-target outcomes of therapeutic gene editing.
Nat Genet. 2023 Jan;55(1):34-43. doi: 10.1038/s41588-022-01257-y. Epub 2022 Dec 15.
10
Massively targeted evaluation of therapeutic CRISPR off-targets in cells.
Nat Commun. 2022 Jul 13;13(1):4049. doi: 10.1038/s41467-022-31543-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验