Suppr超能文献

基于放射组学的胎盘植入谱系 FIGO 分级预测。

Radiomics-based prediction of FIGO grade for placenta accreta spectrum.

机构信息

Department of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland.

Siemens Medical Solutions, Malvern, PA, USA.

出版信息

Eur Radiol Exp. 2023 Sep 20;7(1):54. doi: 10.1186/s41747-023-00369-2.

Abstract

BACKGROUND

Placenta accreta spectrum (PAS) is a rare, life-threatening complication of pregnancy. Predicting PAS severity is critical to individualise care planning for the birth. We aim to explore whether radiomic analysis of T2-weighted magnetic resonance imaging (MRI) can predict severe cases by distinguishing between histopathological subtypes antenatally.

METHODS

This was a bi-centre retrospective analysis of a prospective cohort study conducted between 2018 and 2022. Women who underwent MRI during pregnancy and had histological confirmation of PAS were included. Radiomic features were extracted from T2-weighted images. Univariate regression and multivariate analyses were performed to build predictive models to differentiate between non-invasive (International Federation of Gynecology and Obstetrics [FIGO] grade 1 or 2) and invasive (FIGO grade 3) PAS using R software. Prediction performance was assessed based on several metrics including sensitivity, specificity, accuracy and area under the curve (AUC) at receiver operating characteristic analysis.

RESULTS

Forty-one women met the inclusion criteria. At univariate analysis, 0.64 sensitivity (95% confidence interval [CI] 0.0-1.00), specificity 0.93 (0.38-1.0), 0.58 accuracy (0.37-0.78) and 0.77 AUC (0.56-.097) was achieved for predicting severe FIGO grade 3 PAS. Using a multivariate approach, a support vector machine model yielded 0.30 sensitivity (95% CI 0.18-1.0]), 0.74 specificity (0.38-1.00), 0.58 accuracy (0.40-0.82), and 0.53 AUC (0.40-0.85).

CONCLUSION

Our results demonstrate a predictive potential of this machine learning pipeline for classifying severe PAS cases.

RELEVANCE STATEMENT

This study demonstrates the potential use of radiomics from MR images to identify severe cases of placenta accreta spectrum antenatally.

KEY POINTS

• Identifying severe cases of placenta accreta spectrum from imaging is challenging. • We present a methodological approach for radiomics-based prediction of placenta accreta. • We report certain radiomic features are able to predict severe PAS subtypes. • Identifying severe PAS subtypes ensures safe and individualised care planning for birth.

摘要

背景

胎盘植入谱系疾病(PAS)是一种罕见的、危及生命的妊娠并发症。预测 PAS 的严重程度对于个体化的分娩护理计划至关重要。我们旨在探讨磁共振成像(MRI)的放射组学分析是否可以通过产前区分组织病理学亚型来预测严重病例。

方法

这是一项在 2018 年至 2022 年期间进行的前瞻性队列研究的双中心回顾性分析。纳入了在怀孕期间接受 MRI 检查并经组织学证实 PAS 的女性。从 T2 加权图像中提取放射组学特征。使用 R 软件对单变量回归和多变量分析进行了分析,以建立预测模型,以区分非侵袭性(国际妇产科联合会[FIGO] 1 级或 2 级)和侵袭性(FIGO 3 级)PAS。预测性能基于多种指标进行评估,包括敏感性、特异性、准确性和接收器操作特征分析中的曲线下面积(AUC)。

结果

41 名女性符合纳入标准。在单变量分析中,预测严重 FIGO 3 级 PAS 的敏感性为 0.64(95%置信区间 [CI] 0.0-1.00),特异性为 0.93(0.38-1.0),准确性为 0.58(0.37-0.78),AUC 为 0.77(0.56-0.097)。使用多变量方法,支持向量机模型的敏感性为 0.30(95%CI 0.18-1.0]),特异性为 0.74(0.38-1.00),准确性为 0.58(0.40-0.82),AUC 为 0.53(0.40-0.85)。

结论

我们的结果表明,这种机器学习管道具有对严重 PAS 病例进行分类的预测潜力。

相关性声明

本研究证明了从磁共振成像中提取放射组学特征来识别产前 PAS 严重程度的可能性。

要点

  • 从影像学上识别严重的胎盘植入谱系疾病具有挑战性。

  • 我们提出了一种基于放射组学的胎盘植入预测的方法。

  • 我们报告某些放射组学特征能够预测严重的 PAS 亚型。

  • 识别严重的 PAS 亚型可确保分娩时安全个体化的护理计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccc8/10509122/f4bd5d82d6f6/41747_2023_369_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验