Patel Vishal, Wang Alan, Monk Andrew Paul, Schneider Marco Tien-Yueh
Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand.
Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1010, New Zealand.
Bioengineering (Basel). 2024 Feb 15;11(2):0. doi: 10.3390/bioengineering11020186.
This study introduces a hybrid analytical super-resolution (SR) pipeline aimed at enhancing the resolution of medical magnetic resonance imaging (MRI) scans. The primary objective is to overcome the limitations of clinical MRI resolution without the need for additional expensive hardware. The proposed pipeline involves three key steps: pre-processing to re-slice and register the image stacks; SR reconstruction to combine information from three orthogonal image stacks to generate a high-resolution image stack; and post-processing using an artefact reduction convolutional neural network (ARCNN) to reduce the block artefacts introduced during SR reconstruction. The workflow was validated on a dataset of six knee MRIs obtained at high resolution using various sequences. Quantitative analysis of the method revealed promising results, showing an average mean error of 1.40 ± 2.22% in voxel intensities between the SR denoised images and the original high-resolution images. Qualitatively, the method improved out-of-plane resolution while preserving in-plane image quality. The hybrid SR pipeline also displayed robustness across different MRI sequences, demonstrating potential for clinical application in orthopaedics and beyond. Although computationally intensive, this method offers a viable alternative to costly hardware upgrades and holds promise for improving diagnostic accuracy and generating more anatomically accurate models of the human body.
本研究介绍了一种混合分析超分辨率(SR)流程,旨在提高医学磁共振成像(MRI)扫描的分辨率。主要目标是克服临床MRI分辨率的局限性,而无需额外的昂贵硬件。所提出的流程包括三个关键步骤:预处理,对图像堆栈进行重新切片和配准;SR重建,将来自三个正交图像堆栈的信息组合起来,以生成高分辨率图像堆栈;以及后处理,使用伪影减少卷积神经网络(ARCNN)来减少SR重建过程中引入的块状伪影。该工作流程在使用各种序列以高分辨率获得的六个膝关节MRI数据集上得到了验证。对该方法的定量分析显示了有前景的结果,在SR去噪图像和原始高分辨率图像之间的体素强度平均平均误差为1.40±2.22%。定性地说,该方法提高了平面外分辨率,同时保留了平面内图像质量。混合SR流程在不同的MRI序列中也表现出稳健性,展示了在骨科及其他领域临床应用的潜力。尽管计算量很大,但该方法为昂贵的硬件升级提供了一种可行的替代方案,并有望提高诊断准确性和生成更符合人体解剖结构的模型。