Suppr超能文献

基于深度学习的膝关节磁共振成像超分辨率重建。

Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning.

机构信息

Engineering Research Centre in Industrial Intellectual Techniques and Systems of Fujian Providence College of Engineering, Huaqiao University, Chenghua North Road, Fengze District, Quanzhou, Fujian 362021, China.

出版信息

Comput Methods Programs Biomed. 2020 Apr;187:105059. doi: 10.1016/j.cmpb.2019.105059. Epub 2019 Sep 24.

Abstract

BACKGROUND AND OBJECTIVE

With the rapid development of medical imaging and intelligent diagnosis, artificial intelligence methods have become a research hotspot of radiography processing technology in recent years. The low definition of knee magnetic resonance image texture seriously affects the diagnosis of knee osteoarthritis. This paper presents a super-resolution reconstruction method to address this problem.

METHODS

In this paper, we propose an efficient medical image super-resolution (EMISR) method, in which we mainly adopted three hidden layers of super-resolution convolution neural network (SRCNN) and a sub-pixel convolution layer of efficient sub-pixel convolution neural network (ESPCN). The addition of the efficient sub-pixel convolutional layer in the hidden layer and the small network replacement consisting of concatenated convolutions to address low-resolution images but not high-resolution images are important. The EMISR method also uses cascaded small convolution kernels to improve reconstruction speed and deepen the convolution neural network to improve reconstruction quality.

RESULTS

The proposed method is tested in the public dataset IDI, and the reconstruction quality of the algorithm is higher than that of the sparse coding-based network (SCN) method, the SRCNN method, and the ESPCN method (+ 2.306 dB, + 2.540 dB, + 1.089 dB improved); moreover, the reconstruction speed is faster than its counterparts (+ 4.272 s, + 1.967 s, and + 0.073 s improved).

CONCLUSION

The experimental results show that our EMISR framework has improved performance and greatly reduces the number of parameters and training time. Furthermore, the reconstructed image presents more details, and the edges are more complete. Therefore, the EMISR technique provides a more powerful medical analysis in knee osteoarthritis examinations.

摘要

背景与目的

随着医学影像和智能诊断的快速发展,人工智能方法已成为近年来放射摄影处理技术的研究热点。膝关节磁共振图像纹理的低清晰度严重影响了膝关节骨关节炎的诊断。本文提出了一种超分辨率重建方法来解决这个问题。

方法

本文提出了一种高效的医学图像超分辨率(EMISR)方法,主要采用三层超分辨率卷积神经网络(SRCNN)和高效子像素卷积神经网络(ESPCN)的子像素卷积层。在隐藏层中添加高效子像素卷积层和由串联卷积组成的小网络替换,以解决低分辨率图像而不是高分辨率图像的问题,这一点非常重要。EMISR 方法还使用级联小卷积核来提高重建速度,并加深卷积神经网络以提高重建质量。

结果

该方法在公共数据集 IDI 上进行了测试,算法的重建质量高于基于稀疏编码的网络(SCN)方法、SRCNN 方法和 ESPCN 方法(+2.306dB、+2.540dB、+1.089dB 提高);此外,重建速度比其对应方法更快(+4.272s、+1.967s 和+0.073s 提高)。

结论

实验结果表明,我们的 EMISR 框架在提高性能的同时,大大减少了参数数量和训练时间。此外,重建图像呈现更多细节,边缘更加完整。因此,EMISR 技术为膝关节骨关节炎检查提供了更强大的医学分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验