Suppr超能文献

氧化石墨烯固定化膜和气提式膜蒸馏回收异戊醇

Recovery of Isoamyl Alcohol by Graphene Oxide Immobilized Membrane and Air-Sparged Membrane Distillation.

作者信息

Bhoumick Mitun Chandra, Paul Sumona, Roy Sagar, Harvey Benjamin G, Mitra Somenath

机构信息

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.

Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, CA 93555, USA.

出版信息

Membranes (Basel). 2024 Feb 10;14(2):49. doi: 10.3390/membranes14020049.

Abstract

Isoamyl alcohol is an important biomass fermentation product that can be used as a gasoline surrogate, jet fuel precursor, and platform molecule for the synthesis of fine chemicals and pharmaceuticals. This study reports on the use of graphene oxide immobilized membra (GOIMs) for the recovery of isoamyl alcohol from an aqueous matrix. The separation was performed using air-sparged membrane distillation (ASMD). In contrast to a conventional PTFE membrane, which exhibited minimal separation, preferential adsorption on graphene oxide within GOIMs resulted in highly selective isoamyl alcohol separation. The separation factor reached 6.7, along with a flux as high as 1.12 kg/m h. Notably, the overall mass transfer coefficients indicated improvements with a GOIM. Optimization via response surfaces showed curvature effects for the separation factor due to the interaction effects. An empirical model was generated based on regression equations to predict the flux and separation factor. This study demonstrates the potential of GOIMs and ASMD for the efficient recovery of higher alcohols from aqueous solutions, highlighting the practical applications of these techniques for the production of biofuels and bioproducts.

摘要

异戊醇是一种重要的生物质发酵产物,可用作汽油替代品、喷气燃料前驱体以及用于合成精细化学品和药品的平台分子。本研究报道了使用氧化石墨烯固定化膜(GOIMs)从水相中回收异戊醇。分离过程采用鼓气式膜蒸馏(ASMD)进行。与表现出极少分离效果的传统聚四氟乙烯膜相比,GOIMs中氧化石墨烯上的优先吸附导致了对异戊醇的高度选择性分离。分离因子达到6.7,通量高达1.12 kg/m²·h。值得注意的是,整体传质系数显示使用GOIMs有所改善。通过响应面进行的优化表明,由于相互作用效应,分离因子存在曲率效应。基于回归方程生成了一个经验模型来预测通量和分离因子。本研究证明了GOIMs和ASMD在从水溶液中高效回收高级醇方面的潜力,突出了这些技术在生物燃料和生物产品生产中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c9/10890467/64e6efc1109a/membranes-14-00049-g001.jpg

相似文献

1
Recovery of Isoamyl Alcohol by Graphene Oxide Immobilized Membrane and Air-Sparged Membrane Distillation.
Membranes (Basel). 2024 Feb 10;14(2):49. doi: 10.3390/membranes14020049.
4
5
Development of a Simple Colorimetric Assay for Determination of the Isoamyl Alcohol-Producing Strain.
Appl Biochem Biotechnol. 2020 Oct;192(2):632-642. doi: 10.1007/s12010-020-03353-3. Epub 2020 Jun 5.
6
Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation.
ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2097-103. doi: 10.1021/acsami.5b10551. Epub 2016 Jan 14.
8
Adsorption of alcohol from water by poly(ionic liquid)s.
Bioprocess Biosyst Eng. 2013 Jun;36(6):651-8. doi: 10.1007/s00449-012-0828-8. Epub 2012 Sep 26.
9
Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.
Appl Microbiol Biotechnol. 2017 Jan;101(1):465-474. doi: 10.1007/s00253-016-7970-1. Epub 2016 Nov 15.
10
Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation.
J Colloid Interface Sci. 2019 Jun 1;545:276-281. doi: 10.1016/j.jcis.2019.03.027. Epub 2019 Mar 14.

本文引用的文献

1
Emerging trends and advances in valorization of lignocellulosic biomass to biofuels.
J Environ Manage. 2023 Nov 1;345:118527. doi: 10.1016/j.jenvman.2023.118527. Epub 2023 Jul 8.
2
Hydrothermal carbonization of food waste for sustainable biofuel production: Advancements, challenges, and future prospects.
Sci Total Environ. 2023 Nov 1;897:165327. doi: 10.1016/j.scitotenv.2023.165327. Epub 2023 Jul 6.
3
Desalination technologies, membrane distillation, and electrospinning, an overview.
Heliyon. 2023 Jan 9;9(2):e12810. doi: 10.1016/j.heliyon.2023.e12810. eCollection 2023 Feb.
4
Rewiring of metabolic pathways in yeasts for sustainable production of biofuels.
Bioresour Technol. 2023 Mar;372:128668. doi: 10.1016/j.biortech.2023.128668. Epub 2023 Jan 21.
5
Biofuel production from Euglena: Current status and techno-economic perspectives.
Bioresour Technol. 2023 Mar;371:128582. doi: 10.1016/j.biortech.2023.128582. Epub 2023 Jan 4.
6
Oligo(amylene) from the reaction of fusel oil with zinc dihalide.
RSC Adv. 2021 Jan 7;11(4):1960-1968. doi: 10.1039/d0ra10386a. eCollection 2021 Jan 6.
7
Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem.
Bioresour Technol. 2022 Jan;343:126155. doi: 10.1016/j.biortech.2021.126155. Epub 2021 Oct 19.
8
Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions.
Chemosphere. 2021 Dec;285:131535. doi: 10.1016/j.chemosphere.2021.131535. Epub 2021 Jul 12.
9
Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives.
J Environ Manage. 2021 Jul 15;290:112627. doi: 10.1016/j.jenvman.2021.112627. Epub 2021 May 12.
10
[4+4]-Cycloaddition of Isoprene for the Production of High-Performance Bio-Based Jet Fuel.
Green Chem. 2019 Oct 21;21(20):5616-5623. doi: 10.1039/c9gc02404b. Epub 2019 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验