文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Light Absorption Analysis and Optimization of Ag@TiO Core-Shell Nanospheroid and Nanorod.

作者信息

Wumaier Dilishati, Tuersun Paerhatijiang, Li Shuyuan, Li Yixuan, Wang Meng, Xu Dibo

机构信息

Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.

出版信息

Nanomaterials (Basel). 2024 Feb 7;14(4):325. doi: 10.3390/nano14040325.


DOI:10.3390/nano14040325
PMID:38392698
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10892335/
Abstract

For photothermal therapy of cancer, it is necessary to find Ag @TiO core-shell nanoparticles that can freely tune the resonance wavelength within the near-infrared biological window. In this paper, the finite element method and the size-dependent refractive index of metal nanoparticles were used to theoretically investigate the effects of the core material, core length, core aspect ratio, shell thickness, refractive index of the surrounding medium, and the particle orientation on the light absorption properties of Ag@TiO core-shell nanospheroid and nanorod. The calculations show that the position and intensity of the light absorption resonance peaks can be freely tuned within the first and second biological windows by changing the above-mentioned parameters. Two laser wavelengths commonly used in photothermal therapy, 808 nm (first biological window) and 1064 nm (second biological window), were selected to optimize the core length and aspect ratio of Ag@TiO core-shell nanospheroid and nanorod. It was found that the optimized Ag@TiO core-shell nanospheroid has a stronger light absorption capacity at the laser wavelengths of 808 nm and 1064 nm. The optimized Ag@TiO core-shell nanoparticles can be used as ideal therapeutic agents in photothermal therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/f01c93f63aa1/nanomaterials-14-00325-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/1d0f556d8676/nanomaterials-14-00325-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/6538bc0cc8cc/nanomaterials-14-00325-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/b81e17fccb22/nanomaterials-14-00325-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/b290078752ee/nanomaterials-14-00325-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/55ed78aa0f18/nanomaterials-14-00325-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/98550c3e850e/nanomaterials-14-00325-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/3afd4b27fde0/nanomaterials-14-00325-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/1e2c8d1ef87d/nanomaterials-14-00325-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/f01c93f63aa1/nanomaterials-14-00325-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/1d0f556d8676/nanomaterials-14-00325-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/6538bc0cc8cc/nanomaterials-14-00325-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/b81e17fccb22/nanomaterials-14-00325-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/b290078752ee/nanomaterials-14-00325-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/55ed78aa0f18/nanomaterials-14-00325-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/98550c3e850e/nanomaterials-14-00325-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/3afd4b27fde0/nanomaterials-14-00325-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/1e2c8d1ef87d/nanomaterials-14-00325-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e67/10892335/f01c93f63aa1/nanomaterials-14-00325-g009.jpg

相似文献

[1]
Light Absorption Analysis and Optimization of Ag@TiO Core-Shell Nanospheroid and Nanorod.

Nanomaterials (Basel). 2024-2-7

[2]
Plasmonic Ag@CuO core-shell nanostructures exhibiting near-infrared photothermal effect.

RSC Adv. 2023-10-27

[3]
Analysis and Optimization of Light Absorption and Scattering Properties of Metal Nanocages.

Nanomaterials (Basel). 2024-10-4

[4]
Plasmon resonances of GZO core-Ag shell nanospheres, nanorods, and nanodisks for biosensing and biomedical applications in near-infrared biological windows I and II.

Phys Chem Chem Phys. 2024-6-26

[5]
Numerical Study on the Surface Plasmon Resonance Tunability of Spherical and Non-Spherical Core-Shell Dimer Nanostructures.

Nanomaterials (Basel). 2021-6-30

[6]
Plasmonic rod-in-shell nanoparticles for photothermal therapy.

Phys Chem Chem Phys. 2014-6-28

[7]
Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.

J Phys Chem B. 2006-4-13

[8]
Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.

ACS Nano. 2013-5-10

[9]
Synthesis of beta-cyclodextrin-modified water-dispersible Ag-TiO2 core-shell nanoparticles and their photocatalytic activity.

J Nanosci Nanotechnol. 2011-4

[10]
Theoretical and in vivo experimental investigation of laser hyperthermia for vascular dermatology mediated by liposome@Au core-shell nanoparticles.

Lasers Med Sci. 2022-10

引用本文的文献

[1]
Analysis and Optimization of Light Absorption and Scattering Properties of Metal Nanocages.

Nanomaterials (Basel). 2024-10-4

本文引用的文献

[1]
Plasmonic Ag@CuO core-shell nanostructures exhibiting near-infrared photothermal effect.

RSC Adv. 2023-10-27

[2]
Large-Area Arrays of Polymer-Tethered Gold Nanorods with Controllable Orientation and Their Application in Nano-Floating-Gate Memory Devices.

Small. 2023-6

[3]
Gold Nanorods: The Most Versatile Plasmonic Nanoparticles.

Chem Rev. 2021-11-10

[4]
Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy.

Pharmaceutics. 2021-7-30

[5]
Recent Advances in Plasmonic Photocatalysis Based on TiO and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis.

Small. 2022-1

[6]
Clinical development and potential of photothermal and photodynamic therapies for cancer.

Nat Rev Clin Oncol. 2020-11

[7]
Development of a cysteine sensor based on the peroxidase-like activity of AgNPs@ FeO core-shell nanostructures.

Anal Chim Acta. 2020-2-12

[8]
Two-Dimensional Nanomaterials for Photothermal Therapy.

Angew Chem Int Ed Engl. 2020-4-6

[9]
Ag@TiO Nanoprisms with Highly Efficient Near-Infrared Photothermal Conversion for Melanoma Therapy.

Chem Asian J. 2019-12-5

[10]
Gold Nanoparticles for Photothermal Cancer Therapy.

Front Chem. 2019-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索