Strach Aleksandra, Dulski Mateusz, Wasilkowski Daniel, Matus Krzysztof, Dudek Karolina, Podwórny Jacek, Rawicka Patrycja, Grebnevs Vladlens, Waloszczyk Natalia, Nowak Anna, Poloczek Paulina, Golba Sylwia
Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland.
Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
Nanomaterials (Basel). 2024 Feb 8;14(4):337. doi: 10.3390/nano14040337.
In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/AgCO heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as and . Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.
针对重金属和贵金属环境污染这一长期挑战,我们的研究探索了一种利用多孔球形二氧化硅纳米结构捕获银的新方法。该目标是通过在不同功率(P = 150或800 W)和暴露时间(t = 60或150 s)下使用微波辐射来实现的。这导致了具有增强金属捕获能力的二氧化硅表面的开发。微波辅助的二氧化硅表面改性不仅影响载体内部的显著变化,还促进了具有不同形态、结构和化学成分的银纳米颗粒的结晶过程。微波处理还可以刺激核壳生物活性Ag/AgCO异质结的形成。由于银纳米颗粒的球形度和碳酸银的存在,改性纳米复合材料对常见微生物(如 和 )表现出更高的毒性。包括最低抑菌浓度(MIC)和半最大抑制浓度(IC)测定在内的毒理学评估强调了纳米复合材料的功效。这项研究是应对污染挑战的重要一步。它展示了微波改性二氧化硅在对抗环境污染方面的潜力。微波工程强调了一种复杂的污染修复方法,并强调了纳米技术在塑造可持续环境管理解决方案中的关键作用。