Suppr超能文献

微波辐射对多孔环境活性银-二氧化硅纳米复合材料的结构、物理化学和生物学特性的影响。

Microwave Irradiation vs. Structural, Physicochemical, and Biological Features of Porous Environmentally Active Silver-Silica Nanocomposites.

机构信息

Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland.

Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.

出版信息

Int J Mol Sci. 2023 Apr 1;24(7):6632. doi: 10.3390/ijms24076632.

Abstract

Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive AgO/AgCO heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against , , and . Furthermore, such structures negatively affected the antioxidant defense system of , , and through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.

摘要

重金属和其他有机污染物对环境造成负担,而它们的去除或中和仍不充分。这方面的巨大发展潜力包括具有发达活性表面和开放孔隙率的多孔、球形二氧化硅纳米结构。在这种情况下,我们使用微波场(可变功率和暴露时间)对二氧化硅球的表面进行修饰,以提高金属吸收潜力并构建稳定的生物活性 AgO/AgCO 异质结。结果表明,微波场的功率(P = 150 或 700 W)对载体修饰的影响比时间(t = 60 或 150 s)更微不足道。表面活化和负载银的二氧化硅载体的形态、结构和化学成分与微生物和抗氧化酶活性相关。我们证明,银纳米颗粒的球形度增加极大地增加了对 、 、 和 的毒性。此外,这些结构通过诱导氧化应激对 、 、 和 的抗氧化防御系统产生负面影响,导致细胞死亡。在微波场中对载体进行长时间处理的纳米复合材料中发现了最显著的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a831/10095382/30ea79dc775d/ijms-24-06632-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验