Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College, 240 E 59 St, New York, NY, 10022, USA.
Department of Otorhinolaryngology, Head and Neck Surgery, Hôpital Foch, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France.
Eur Arch Otorhinolaryngol. 2024 May;281(5):2723-2731. doi: 10.1007/s00405-024-08512-4. Epub 2024 Feb 23.
PURPOSE: Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools. METHODS: Recent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar. RESULTS: Significant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the "black box" problem and limitations in explainability. CONCLUSIONS: Potential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial.
目的:尽管人工智能 (AI) 和机器学习 (ML) 的研究及其在医学中的应用已经得到了蓬勃的发展,但这些方法对于许多耳鼻喉科医生来说仍然是不透明和难以理解的。特别是随着大型语言模型(LLM)的日益普及,如 ChatGPT 及其在临床实践中的潜在应用,临床医生可能会受益于对 AI 的某些方面的基本了解。在这篇叙述性评论中,我们旨在阐明基本概念,说明其在耳鼻喉科中的应用,并强调这些工具的未来方向和局限性。
方法:通过在 PubMed 和 Google Scholar 上搜索,回顾了近期关于 AI 原则以及 ML 和 LLM 在耳鼻喉科应用的文献。
结果:在耳鼻喉科研究中,利用 AI 和 ML 已经取得了重大进展,涵盖了所有亚专业领域,包括神经耳科学、头颈部肿瘤学、喉科学、鼻科学和睡眠外科。最近的出版物提出的潜在应用包括筛查和诊断、预测工具、临床决策支持以及通过 LLM 改善临床工作流程。目前医学领域中对于 AI 的担忧包括围绕偏见和数据共享的伦理问题,以及“黑箱”问题和可解释性的局限性。
结论:AI 在耳鼻喉科中的应用正在迅速扩展。尽管这些工具中的大多数在临床实践中的应用仍处于理论阶段,但它们对耳鼻喉科实践产生影响的潜力是巨大的。
J Med Internet Res. 2024-10-30
Auris Nasus Larynx. 2025-5-21
Int J Pediatr Otorhinolaryngol. 2025-7
Front Physiol. 2025-3-13
Sensors (Basel). 2024-11-6
Indian J Otolaryngol Head Neck Surg. 2024-10
Eur Arch Otorhinolaryngol. 2024-11
J Oral Pathol Med. 2023-11
Eur Arch Otorhinolaryngol. 2023-10
Semin Cancer Biol. 2023-10
Nat Med. 2023-8